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ABSTRACT

In this thesis we study synchronization phenomena in natural and artificial coupled

multi-component systems, applicable to the scalability of parallel discrete-event sim-

ulation for systems with asynchronous dynamics. We also study the role of various

complex communication topologies as synchronization networks. We analyze the

properties of the virtual time horizon or synchronization landscape (corresponding

to the progress of the processing elements) of these networks by using the framework

of non-equilibrium surface growth.

When the communication topology mimics that of the short-range interact-

ing underlying system, the virtual time horizon exhibits Kardar-Parisi-Zhang-like

kinetic roughening. Although the virtual times, on average, progress at a nonzero

rate, their statistical spread diverges with the number of processing elements, hin-

dering efficient data collection. We show that when the synchronization topology is

extended to include quenched random communication links (small-world links) be-

tween the processing elements, they make a close-to-uniform progress with a nonzero

rate, without global synchronization. This leads to a fully scalable parallel simu-

lation for underlying systems with asynchronous dynamics and short-range inter-

actions. We study both short-range and small-world synchronization topologies in

one- and two-dimensional systems. We also provide a coarse-grained description

for the small-world-synchronized virtual-time horizon and compare the findings to

those obtained by “simulating the simulations” based on the exact algorithmic rules.

We also present numerical results for the evolution of the virtual-time horizon on

scale-free Barabási-Albert networks serving as communication topology among the

processing elements.

Finally, we investigate to what extent small-world couplings (extending the

original local relaxational dynamics through the random links) lead to the suppres-

sion of extreme fluctuations in the synchronization landscape. In the absence of

the random links, the steady-state landscape is “rough” (strongly de-synchronized

state) and the average and the extreme height fluctuations diverge in the same

viii



power-law fashion with the system size (number of nodes). With small-world links

present, the average size of the fluctuations becomes finite (synchronized state).

For exponential-like noise the extreme heights diverge only logarithmically with the

number of nodes, while for power-law noise they diverge in a power-law fashion.

The statistics of the extreme heights are governed by the Fisher–Tippett–Gumbel

and the Fréchet distribution for exponential and power-law noise, respectively.

ix



CHAPTER 1

INTRODUCTION

1.1 Complex Networks

Cooperative behavior and collective phenomena have always been the center

stage of statistical physics. More recently, the study of complex systems has become

widespread across disciplines ranging from socio-economic systems, traffic models,

epidemic models, to the Internet, the World-Wide Web, and grid computer networks.

With the tools and frameworks provided by modern statistical physics, and with the

availability of rapidly increasing computational resources, there is a chance to gain

deeper understanding of the behavior of these systems.

One direction to study complexity is using minimal models where one consid-

ers a large number of simple interacting entities (agents, individuals, components,

etc.) assuming a (typically simple) effective interaction between these entities. For

example, in the Ising model for ferromagnets, the entities are the two-state spins

and the interaction energetically prefers neighboring spins to be aligned. In simple

models for social systems, the entities are humans, and the interaction can be, e.g.,

mimicking (simple majority influence by their social contacts).

While the interactions and the individual components may be simple, the col-

lective behavior of these interacting systems are often far from trivial. For example,

in the Ising model, in sufficiently high dimension, spontaneous order (symmetry

breaking) emerges below some critical temperature. At the critical point the sys-

tems becomes strongly correlated, even though the interaction between spins only

extends to a few neighbors. These are the kind of emergent behaviors we are in-

terested in, namely, how locally interacting entities can produce large-scale effects.

It needs to be emphasized that in these models, complexity emerges through the

“outcome” of the evolution of the system with a large number of entities, not in the

construction of the individual-level (“microscopic”) dynamics or rules.

Despite the great complexity and variety of systems, universal laws and phe-

nomena are essential to our inquiry and to our understanding [1]. One way of de-

1



2

scribing complex systems is modeling them mathematically by using the framework

of networks which is essentially a relational approach. A network can be defined

as a set of items, referred to as nodes, and links connecting them. It is a concept

borrowed from the graph theory, a subfield of combinatorics in mathematics.

The study of complex networks pervades various areas of science ranging from

sociology to statistical physics [2, 3, 4]. Many of our important technological, infor-

mation, and infrastructure systems can be considered complex networks [5, 6, 7, 8]

with a large number of components. The links between the nodes in these net-

works facilitate some kind of effective interaction/dynamics between the nodes.

Examples (with the processes inducing the interaction between the nodes) include

high-performance scalable parallel or grid-computing networks (synchronization pro-

tocols for massive parallelization) [8], diffusive load-balancing schemes (relocating

jobs among processors) [9], the Internet (protocols for sending/receiving packets)

[5, 6, 10], the World Wide Web (hyperlinks in the web pages for other web pages)

[11], the electric power grid (generating/transmitting power between generators and

buses) [7], metabolic networks (reactions between molecules) [12] or social networks

(acquaintance or social contacts) [13, 14]. Many of these systems are autonomous

(by design or historical evolution), i.e., they lack a central regulator. Thus, fluctua-

tions in the “load” in the respective network (data/state savings or task allocation

in parallel simulations, traffic in the Internet, voltage/phase in the electric grid etc.)

are determined by the collective result of the individual decisions of many interacting

“agents” (nodes). As the number of processors on parallel architectures increases to

hundreds of thousands [15], grid-computing networks proliferate over the Internet

[16, 17], or the electric power-grid covers, e.g., the North-American continent [7],

fundamental questions on the corresponding dynamical processes on the respective

underlying networks must be addressed.

Regular lattices are commonly used to study physical systems with short-range

interactions. Earlier studies focused mostly on the topological properties of the net-

works. Recent works, motivated by a large number of natural and artificial systems,

such as the ones listed above, have turned the focus to processes on networks, where

the interaction and dynamics between the nodes are facilitated by a complex net-
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work. The question then is how this possibly complex interaction topology influences

the collective behavior of the system.

A common property of many real-life networks is that the degree or connectiv-

ity (number of connections of a node) follow a scale-free (power-law) distribution.

Examples include world wide web, router level Internet, movie actors collaboration

network, science collaboration network, cellular networks and linguistic networks

[2]. Barabási and Albert [5] introduced a growth model with preferential attach-

ment producing scale-free networks. They added one node at every time step with

m links and connected this node to existing nodes with a probability proportional

to the degree of the existing nodes. This method leads to a power-law degree distri-

bution function (having a heavier tail compared to an exponential one), P (k)=2m2

k3 ,

shown in Fig. 1.1(a). The consequence of the power-law tail in the degree distribu-

tion is the existence of hubs, i.e., a few nodes with a large number of connections,

often observed in real-life networks.

10
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10
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Figure 1.1: (a) Degree distribution of the scale-free Barabási-Albert net-
work with m=5, yielding an average degree of 〈k〉=10. The
dashed line shows the power-law behavior in log-log scale.
(b) Degree distribution of a SW network (Erdős-Rényi Net-
work on a 1D ring) with p=8. This p value with the additional
two nearest-neighbor links yields an average degree 〈k〉=10.
The dashed curve is a Poissonian. The delta-function with
circles around 〈k〉=2 is the degree distribution of the regular
one-dimensional short-range network with only two nearest-
neighbor links.

Watts and Strogatz, inspired by a sociological experiment [18], have proposed
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a network model known as the small-world (SW) network [19]. The SW concept

describes the observation that, despite their often large size, there is a relatively short

path between any two nodes in most networks with some degree of randomness. The

SW model was originally constructed as a network to interpolate between regular

lattices and completely random networks [20]. Watts and Strogatz considered a

regular short-range network with k nearest links per node. Then they randomly

visited the links and rewired them to randomly chosen nodes with probability p.

Thus, by varying the parameter p they were able to interpolate between a regular

(p=0) and a completely random (p=1) network.

Another way of constructing the SW network, instead of rewiring, is visiting

every pair of nodes and adding a link between them with probability p/N , where N

is the number of nodes. This construction on top of the regular network, also called

random graph and first introduced by Erdős and Rényi [20], have been traditionally

used to describe the networks of random topology. The degree distribution of this

SW graph is a Poissonian centered at the mean degree, 〈k〉≃p + 2, as shown in

Fig. 1.1(b) with p=8. For p=0, we obtain the short-range regular network with a

Kronecker-delta degree distribution, P (k)=δkz where z is the coordination number

(in 1D, z=2, see Fig. 1.1(b)).

Another important characteristic of networks is the average shortest path

length δavg. The shortest path length can be defined as the minimum number of in-

termediary nodes between two nodes. All networks with some degree of randomness

has the property that δavg is much smaller than that of regular network with the

same number of nodes and with the same average degree. This very short separation

between any pair of nodes is commonly referred to as the “low degree of separation”.

Typically the average shortest path length increases no faster than the logarithm of

the number of nodes N . For illustration we show the average shortest path length

as a function of system size N for SW (p=8) and BA (m=5) network in Fig. 1.2.

Note that on a d-dimensional regular network δavg ∼ N
1/d
nodes ∼ Nlinear where Nnodes

is the number of nodes, Nlinear is the linear system size (Nnodes=Nd
linear) and d is

the dimension.

Systems and models (with well-known behaviors on regular lattices) have been
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Figure 1.2: The average shortest path length δavg as a function of system
size N for SW (p=8) and BA (m=5). Note normal-log scale.

studied on SW networks, such as the Ising model [21, 22, 23, 24], the XY model

[25], phase ordering [26], the Edwards-Wilkinson model [27, 28, 29] and diffusion

[27, 28, 29, 30, 31, 32, 33, 34]. Closely related to phase transitions and collec-

tive phenomena is synchronization in coupled multi-component systems [35]. SW

networks have been shown to facilitate autonomous synchronization which is an im-

portant feature of these networks from both fundamental and system-design points

of view [36, 37, 38]. In this thesis we study a synchronization problem which emerges

[39] in certain parallel/distributed algorithms referred to as parallel discrete-event

simulation (PDES) [40, 41, 42, 43]. First, we find that constructing a SW-like syn-

chronization network for PDES can have a huge impact on the scalability of the

algorithm [8]. Secondly, since the particular problem is effectively “local” relax-

ation in a noisy environment in a SW network, our study also contributes to the

understanding of collective phenomena on these networks.

1.2 Parallel Discrete-Event Simulation

Simulation of large spatially extended complex systems in physics, engineer-

ing, computer science, or military applications require vast amount of CPU-time

on serial machines using sequential algorithms. PDES enabled researchers to imple-

ment faithful simulations on parallel/distributed computer systems, namely, systems
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composed of multiple interconnected computers [40, 41, 42, 43]. Developing and im-

plementing massively parallel algorithms is among the most challenging areas in

computer/computational science and engineering [44]. While there are numerous

technological and hardware-related points, e.g., concerning efficient message pass-

ing and fast communications between computer nodes, the theoretical algorithmic

challenge is often as important.

PDES is a subclass of parallel and distributed simulations in which changes

in the components of the system occur instantaneously from one state to another.

In physics, chemistry and biology communities these types of simulations are most

commonly referred to as dynamic or kinetic Monte Carlo simulations [45]. Exam-

ples of such simulation systems include cellular communication networks [42, 46],

magnetic systems [47, 48], spatial epidemic models [49], thin-film growth [50, 51],

battle-field models [52], and internet traffic models [53]. In these simulations the

discrete events are call arrivals, spin-flip attempts, infections, monomer depositions,

troop movements, and packet transmissions/receptions respectively. In these simu-

lations the algorithm must faithfully and reproducibly keep track of the asynchrony

of the local updates in the system’s configuration. For example standard random-

sequential Monte Carlo simulations naturally produce Poisson asynchrony. In fact,

such continuous-time simulations (e.g., single spin-flip Glauber dynamics [54]) were

long believed to be inherently serial until Lubachevsky’s illuminating work [55, 56]

on the parallelization of these simulations without altering the underlying dynam-

ics. The essence of the problem is to algorithmically parallelize “physically” non-

parallel dynamics of the underlying system while enforcing causality between events

and reproducibility. This requires some kind of synchronization to ensure causality

between events processed by different processing elements (PEs).

The two basic ingredients of PDES are the set of local simulated times (or

virtual times [57]) and a synchronization scheme [40]. The difficulty in PDES is

that the discrete events are not synchronized by a global clock, since the dynamic

is usually asynchronous. There are two main approaches in PDES: (i) conservative

synchronization, which avoids the possibility of any type of causality errors by check-

ing if each event is safe to process [58, 59] and (ii) optimistic synchronization, which
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allows causality errors, then initiates rollbacks to correct the erroneous computations

[57, 60]. Innovative methods have also been introduced to make optimistic synchro-

nization more efficient, such as reverse computation [61]. Other recent improvements

to exploit parallelism in discrete event systems are the “lookback” method [62] and

the freeze-and-shift algorithm [63].

A PDES should have the following properties to be scalable [46]: First, a

scalable PDES scheme must ensure that the average progress rate of the simulation

approaches a nonzero constant in the long-time limit as the number of PEs, NPE,

goes to infinity (computational scalability) 1. Second, the “width” of the simulated

time horizon (the spread of the progress of the individual PEs) should be bounded

as NPE goes to infinity (measurement scalability) [64]. The second requirement is

crucial for the measurement phase of the simulation to be scalable to avoid long

delays while waiting for “slow” nodes [50] or, alternatively, to eliminate the need to

reserve a large amount of memory for temporary data storage: a large width of the

virtual time horizon hinders scalable data management. Temporarily storing a large

amount of data on each PE (being accumulated for “on-the-fly” measurements) is

limited by available memory while frequent global synchronizations can get costly

for large NPE. Thus, one aims to devise a scheme where the PEs make a nonzero

and close-to-uniform progress without global synchronization. In such a scheme, the

PEs autonomously learn the global state of the system (without receiving explicit

global messages) and adjust their progress rate accordingly. In this thesis we study

regular and SW network communication topologies and show a possible way to

construct fully scalable parallel algorithms for underlying systems with asynchronous

dynamics and short-range interactions on regular lattices.

Since one is interested in the dynamics of the underlying complex system, the

PDES scheme must simulate the “physical time” variable of the complex system.

When the simulations are performed on a single processor machine, a single (global)

time stream is sufficient to “label” or time-stamp the updates of the local configu-

1The current largest supercomputer is the IBM/DOE Blue Gene/L with 32K nodes [15]. As
a matter of fact the largest natural supercomputer is the brain, which does an immense parallel
computing task to sustain the individual. In particular the human brain has 1011 PEs (neurons)
each with an average of 104 synaptic connections, creating a bundle on the order of 1015 “wires”
jammed into a volume of approximately 1400 cm3.
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rations, regardless whether the dynamics of the underlying system is synchronous

or asynchronous. When simulating asynchronous dynamics on distributed architec-

tures, however, each PE generates its own physical, or virtual time, which is the

physical time variable of the particular computational domain handled by that PE.

As a result of the local stochastic time increments and the synchronization dynam-

ics, at a given wall-clock instant the simulated virtual times of the PEs can differ, a

phenomenon called “time horizon roughening”. We denote the simulated, or virtual

time at PE i measured at wall-clock time t, by τi(t). The wall-clock time t is directly

proportional to the (discrete) number of parallel steps simultaneously performed on

each PE, also called the number of Monte-Carlo steps (MCS) in dynamic Monte

Carlo simulations. Without altering the meaning, t from now on will be used to

denote the number of discrete steps performed in the parallel simulation. The set of

virtual times {τi(t)}NPE
i=1 forms the virtual time horizon (synchronization landscape)

of the PDES scheme after t parallel updates.

The design of efficient parallel-update schemes is a rather challenging problem,

due to the fact that the dynamics of the simulation scheme itself is a complex system

where the specific synchronization rules correspond to the “microscopic dynamics”,

and its properties are hard to deduce using classical methods of algorithm analysis.

Here we present a less conventional approach to the analysis of efficiency and scala-

bility for the class of massively parallel conservative PDES schemes, by mapping the

parallel computational process itself onto a non-equilibrium surface growth model

[39]. Then, using methods from statistical mechanics to study the dynamics of such

surfaces (in a completely different context), we solve the scalability problem of the

computational PDES scheme [8, 39]. Similar connections between phase transitions

and computational complexity have recently been made [65, 66] for rollback-based

(or optimistic) PDES algorithms [57] and self-organized criticality [67, 68]. These

connections have turned out to be highly fruitful to gain more insight into tradition-

ally hard computational problems [69, 70]. In this thesis we consider the scalability

of conservative synchronization schemes for self-initiating processes [71, 72], where

update attempts on each node are modeled as independent Poisson streams and are

independent of the configuration of the underlying system [55, 56]. We study the
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morphological properties of the virtual time horizon. Although these properties sim-

plify the analysis of the corresponding PDES schemes, they can be highly efficient

[47] and are readily applicable to a large number problems in science and engineer-

ing. Further, the performance and the scalability of these PDES schemes become

independent of the specific underlying system i.e., we learn the generic behavior

of these complex computational schemes. Through our study one also gains some

insight into the effects of SW-like interaction topologies on the critical fluctuations

in interacting systems.

This thesis is organized as follows. In Chapter 2 we show detailed results for

the short-range model on one and two-dimensional regular networks with nearest-

neighbor communication, which we refer to as the basic conservative synchronization

(BCS) scheme [39]. In Chapter 3 we extend our study to SW networks, constructed

by adding random links to regular networks [8]. Chapter 4 presents the results on

scaling and distributions of the extreme fluctuations in regular and SW networks.

In Chapter 5 we summarize our work and discuss future directions.



CHAPTER 2

SYNCHRONIZATION IN REGULAR NETWORKS

First, we briefly summarize the basic observables relevant to our analysis of syn-

chronization and the scaling relations borrowed from non-equilibrium surface growth

theory. The set of local simulated times for the PEs, {τi(t)}NPE
i=1 , constitutes the sim-

ulated time horizon. Here NPE is the number of PEs and t is the discrete number of

parallel steps, directly related to real (wall-clock) time. On a regular d-dimensional

hypercubic lattice NPE=Nd, where N is the linear size of the lattice and d is the

dimension. For a one-dimensional system NPE=N . In the rest of the thesis we will

use the term “height”, “simulated time”, or “virtual time” interchangeably, since

we refer to the same local observable (local field variable).

Since the discrete events in PDES are not synchronized by a global clock, the

processing elements have to communicate with others for synchronization. One of

the first approaches to this problem for self-initiating processes is the basic conserva-

tive synchronization (BCS) scheme proposed by Lubachevsky [55, 56] by using only

nearest neighbor interactions mimicking [39] the interaction topology of the underly-

ing physical system. His basic model associated each component or site with one PE

(worst-case scenario) under periodic boundary conditions. In this BCS scheme, at

each time step only those PEs whose local simulated time is not larger than the local

simulated times of their next nearest neighbors are incremented by an exponentially

distributed random amount so that the discrete events exhibit Poisson asynchrony.

Namely, a PE will only perform its next update if it can obtain the correct informa-

tion to evolve the local configuration (local state) of the underlying physical system

it simulates, without violating causality. Hence, the evolution equation for site i

simply becomes

τi(t + 1) = τi(t) + ηi(t)Θ(−φi(t))Θ(φi+1(t)) , (2.1)

where ηi(t) is an exponentially distributed random number, Θ(...) is the Heaviside

step-function and φi(t) = τi(t)−τi−1(t) is the local slope. In one-dimension with pe-

10
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riodic boundary conditions, the network has a ring topology as shown in Fig. 2.1(a),

so each node is connected to the nearest left and right neighbors. The nearest-

Figure 2.1: One-dimensional (1D) regular network (with periodic bound-
ary conditions), where nodes are connected to their nearest
neighbors.

neighbor interaction in the BCS scheme implies that in order to ensure causality,

PEs need to exchange information on their local simulated (virtual) times only with

neighboring PEs in the virtual network topology. The possible configurations for

the local simulated times for the successive nodes are shown in Fig. 2.2. In these

(b)

i−1

i

i+1
(a)

(d)

i+1

i−1

i−1

i

i+1

i+1

i

i−1

i

(c)

Figure 2.2: Possible simulated-time configurations for three successive
nodes (involving two successive slopes) in the basic conserva-
tive scheme (BCS) in one dimension. From the perspective
of node i, only configuration (b) allows it to proceed (node
i is a local minimum). In all other cases causality could be
violated if an update occurs at site i, because the local field
variables of the neighboring nodes are not known at the in-
stant of update attempt.

configurations update occurs only if the node we are considering (node i) is a local

minimum. In the other three cases the node i idles. In analyzing the performance of

the above scheme, it is helpful that the progress of the simulation itself is decoupled
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from the possibly complex behavior of the underlying system. This is contrary to op-

timistic approaches, where the evolution of the underlying system and the progress

of the PDES simulation are strongly entangled [65], making scalability analysis a

much more difficult task.

One of the important aspects of conservative PDES is the theoretical efficiency

or utilization which can be defined simply as the average fraction of non-idling PEs.

It also determines the average progress rate of the simulation. In the BCS where

only nearest-neighbor interactions are present, the utilization is equal to the density

of local minima in the simulated time horizon. On a regular one-dimensional lattice,

it can be defined as

〈u(N, t)〉 =
1

N

N
∑

i=1

〈Θ(τi−1 − τi)Θ(τi+1 − τi)〉 =
1

N

N
∑

i=1

〈Θ(−φi)Θ(φi+1)〉 , (2.2)

where φi=τi − τi−1 is the local slope, Θ(...) is the Heaviside step function, and

〈...〉 denotes an ensemble average. Note that the individual terms in the sum in

Eq. (2.2), 〈Θ(−φi)Θ(φi+1)〉, become independent of i for a system of identical PEs

due to translational invariance.

Another important observable of PDES is the statistical spread or width of

the simulated time surface. The measurement scalability of the PDES scheme, is

characterized by the width. Instead of dealing with the actual spread (difference

between the maximum and minimum values) we shall consider the average “width”,

w. It is defined as the root-mean-square fluctuation of the virtual times measured

from the mean, w =
√

〈w2〉, where

〈

w2
〉

≡
〈

w2(N, t)
〉

=

〈

1

Nd

Nd
∑

i=1

[τi(t) − τ̄ (t)]2
〉

, (2.3)

with τ̄(t)=(1/Nd)
∑Nd

i=1 τi(t) being the mean progress (“mean height”) of the time

surface, and d is the dimension.

As we mentioned in Chapter 1, for the PDES scheme to be fully scalable, the

following two criteria must be met: (i) the virtual time horizon must progress on

average at a nonzero rate, and (ii) the typical spread of the time horizon should be
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finite, as the number of PEs N goes to infinity. When the first criterion is ensured for

large enough times t, the simulation is said to be computationally scalable, meaning

that when increasing the size of the network to infinity, while keeping the average

computational domain/load on a single PE the same, the simulation will progress

at a nonzero rate. However, as we will show below, while increasing the system

size, the spread in the time horizon can diverge, severely hindering frequent data

collection about the state of the simulated system. Specifically, when one requires

to take a measurement of some physical property of the simulated system at virtual

time τ , PEs have to wait (in wall-clock time) until all the virtual simulated times

at all the PEs pass through the value of τ . Thus, in order to collect system-wide

measurements from the simulation, we incur a waiting time proportional to the

spread, or width of the fluctuating time horizon. For PDES schemes for which the

spread diverges with system size, the waiting time for the measurements will also

diverge, and the scheme is not measurement scalable. When condition (ii) is fulfilled

for large enough times t, we say that the PDES scheme is measurement scalable.

2.1 Scaling in non-equilibrium surfaces

Since we use the formalism and terminology of non-equilibrium surface growth

phenomena, we briefly review scaling concepts for self-affine or rough surfaces. The

scaling behavior of the width, 〈w2(N, t)〉 where N is the linear system size and

t is the time, alone typically captures and identifies the universality class of the

non-equilibrium growth process [73, 74, 75]. In a finite system, the width initially

grows as 〈w2(N, t)〉 ∼ t2β . After a system-size dependent cross-over time t× ∼ N z,

it reaches a steady-state 〈w2(N, t)〉 ∼ N2α for t ≫ tx. In expressions above α,

β and z=α/β are called the roughness, the growth, and the dynamic exponents,

respectively. The above behavior can be summarized as follows

〈

w2(N, t)
〉

∼











t2β for t≪tx

N2α for t≫tx
, (2.4)

where tx∼N z is the cross-over time. From this scaling, one can also extract a length-

scale, known as lateral correlation length, ξ ∼ t1/z for times less than tx, reaching
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the system size at the cross-over time. The temporal and system-size scaling of the

width exhibited by Eq. (2.4) can be captured by the Family-Vicsek [76] relation,

〈

w2(N, t)
〉

= N2αf(t/Nz) . (2.5)

Note that the scaling function f(x) depends on t and the linear system-size N only

through the specific combination, t/Nz, reflecting the importance of the crossover

time t×. For small values of its argument f(x) behaves as a power law, while for

large arguments it approaches a constant

f(x) ∼











x2β if x≪1

const. if x≫1
, (2.6)

yielding the correct scaling behavior of the width for early times and for the steady-

state, respectively.

A somewhat less frequently studied quantity is the growth rate of a growing

surface. This quantity is typically non-universal [39, 77, 78, 79, 80, 81, 82], but as

was shown by Krug and Meakin [78], on d-dimensional regular lattices, the finite-

size corrections to it are. In the context of the basic PDES scheme, the growth rate

of the simulated time surface corresponds to the progress rate (or utilization) of the

simulation, hence our special interest in this observable. For the finite-size behavior

of the steady-state growth rate, one has [78]

〈u(N)〉 ≃ 〈u(∞)〉 +
const.

N2(1−α)
, (2.7)

where 〈u(∞)〉 is the value of the growth rate in the asymptotic infinite system-size

limit and α is the dimension-dependent roughness exponent of the growth process.

2.2 One-Dimensional Basic Conservative Synchronization

Network

Based on a mapping between virtual times and surface site heights [39] and on

the analogy with the single-step surface growth model [83], in the coarse-grained de-
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scription [77], the virtual time horizon of the BCS is proposed to be governed by the

Kardar-Parisi-Zhang (KPZ) equation [84], well-known in surface growth phenomena

∂tτ̂i = ∇2τ̂i − λ(∇τ̂i)
2 + ... + ηi(t) , (2.8)

where ∇2τ̂i is the discretized Laplacian, ∇2τ̂i = τ̂i+1+τ̂i−1−2τ̂i, ∇τ̂i is the discretized

gradient, ∇τ̂i = τ̂i+1 − τ̂i, τ̂i(t) = τi − τ̄ is the surface height fluctuation (or virtual

time) measured from the mean, ηi(t) is Gaussian noise delta-correlated in space and

time, 〈ηi(t)ηj(t
′)〉 = 2Dδijδ(t− t′), λ is a positive constant, and ... stands for higher

order irrelevant terms. Equation (2.8) can also give an account of a number of

other nonlinear phenomena such as Burgers turbulence [85] and directed polymers

in random media [73]. When the simple update rule of the basic synchronization

scheme is implemented on a one-dimensional network, one can observe a simulated

time surface governed by the KPZ equation, and in the steady-state, by an Edwards-

Wilkinson Hamiltonian [86] [Fig. 2.3(a)].

Figure 2.3: Virtual time horizon snapshots for 10,000 sites in 1D. (a)
For the regular network with nearest-neighbor connections
(p=0). The lateral correlation length ξ and width w ≡

√
w2

are shown for illustration in the graph. The rough steady-
state surface belongs to the KPZ/EW universality class. (b)
For the SW synchronization network. The heights are effec-
tively decorrelated and both the correlation length and the
width are reduced, and approach system-size independent
values for sufficiently large systems. The resulting surface is
macroscopically smooth. Note that the heights are relative
to the average height.



16

When analyzing the statistical and morphological properties of the stochastic

landscape of the simulated times, it is convenient to study the height-height corre-

lation or its Fourier transform, the height-height structure factor. The equal-time

height-height structure factor S(k, t) in one-dimension is defined through

Nδk,−k′S(k, t) = 〈τ̃k(t)τ̃k′(t)〉 , (2.9)

where τ̃k =
∑N

j=1 e−ikj τ̂j is the Fourier transform of the virtual times with the

wave number k=2πn/N , n=1, 2, ..., N − 1 and δk,−k′ is the Kronecker delta. The

structure factor essentially contains all the “physics” needed to describe the scal-

ing behavior of the time surface. Here we focus on the steady-state properties

(t→∞) of the time horizon where the structure factor becomes independent of time,

limt→∞ S(k, t)=S(k). In the long-time limit, in one dimension, for a KPZ surface

described by Eq. (2.8) one has (see Appendix A) [77]

S(k) =
D

2[1 − cos(k)]
∼ 1

k2
, (2.10)

where D is a constant and the latter approximation holds for small values of k. By

performing the inverse Fourier transformation of Eq. (2.10), we can also obtain the

spatial two-point correlation function,

G(l) =
1

N

N
∑

i=1

Gi,i+l =
1

N

∑

k 6=0

eiklS(k) , (2.11)

where Gi,i+l=〈(τi − τ̄ )(τi+l − τ̄ )〉 is the site-dependent two point function, yielding

[77, 87]

G(l) ≃ D

2

(

N

6
− l

)

(2.12)

for 1 ≪ l ≪ L. In particular, for the steady-state width one finds

〈w2〉 =
1

N

∑

k 6=0

S(k) = G(0) ≃ D

12
N ∼ N (2.13)

in one dimension [77]. This divergent width is caused by a divergent length scale,

ξ, the “lateral” correlation length in the KPZ-like synchronization landscape.
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The measured steady-state structure factor [Fig. 2.4(a)], obtained by simu-

lating the BCS based on the exact rules for the evolution of the synchronization

landscape confirms the coarse-grained prediction for small k values, S(k) ∼ 1/k2.

Figure 2.4(b) shows the corresponding spatial two-point correlation function, G(l).

Simulation of the BCS scheme in one dimension yields scaling exponents that agree

0 50 100 150 200 250 300

l
190

200

210

220

230

240

250

260

G
(l

)

N=8192

(b)

Figure 2.4: (a) The steady-state structure factor as a function of the
wave number for the BCS scheme in 1D. The small-k
course-grained prediction (consistent with the steady-state
EW/KPZ universality class in 1D) is indicated by a dashed
line [Eq. (2.10)]. Note the log-log scales. (b) Steady-state
spatial two-point correlation function. The straight line again
indicates the asymptotic EW/KPZ behavior in one dimension
[Eq. (2.12)].

within error of the predictions of the KPZ equation [73, 74, 84]. The time evolu-

tion of the width [Fig. 2.5(a)] shows that the growth exponent β ≃ 1/3. Looking

at the system-size dependence of the steady-state width [Figure 2.5(b)], we find

the roughness exponent α ≃ 1/2, consistent with the one-dimensional KPZ value,

〈w2〉 ∼ N2α ∼ N . The dynamic exponent values found from the width as a function

of the cross-over time and z=α/β are the same, about 3/2. The inset in Fig. 2.5(a)

shows that the scaled version of the width evolution by using the scaling exponents

is consistent with the Family-Vicsek relation [Eq. (2.5)], although with relatively

large corrections to scaling.

The steady-state width distributions, P (w2), have been introduced to provide

a more detailed characterization of surface growth processes [88, 89, 90, 91] and have
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Figure 2.5: (a) Time evolution of the width for different system-sizes in
the BCS scheme in 1D. The dynamics of the evolution of
the virtual times is governed by the KPZ equation. The
inset shows the same data on scaled axes, 〈w2〉/N2α versus
t/Nz. Each curve has been obtained by averaging over at
least fifty realizations. (b) The steady-state width of the time
horizon for the one-dimensional BCS as a function of system-
size. The dashed straight line represents the asymptotic one-
dimensional KPZ/EW behavior, 〈w2(N)〉 ∼ N2α with α=1/2.

been used to identify universality classes [39]. Note that the width

w2 =
1

Nd

Nd
∑

i=1

[τi(t) − τ̄(t)]2 , (2.14)

itself is a fluctuating quantity. The width distribution for the EW (or a steady-state

one-dimensional KPZ) class is characterized by a universal scaling function, Φ(x),

such that P (w2) = 〈w2〉−1Φ(w2/〈w2〉), where Φ(x) can be calculated analytically

for a number of models, including the EW class [88]. The width distribution for

the basic synchronization scheme is shown in Fig. 2.6. Systems with N ≥ 103 show

convincing data collapse onto this exact scaling function. The inset in Fig. 2.6

shows the same graph in log-normal scale to show the collapse at the tail of the

distribution. The convergence to the limit distribution is very slow when compared

to other microscopic models (such as the single-step model [73, 91]) belonging to

the same KPZ universality class.

Now we discuss our findings for the steady-state utilization of the BCS scheme.

As stated above, the synchronization landscape of the virtual times belongs to the
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Figure 2.6: ]
Scaled width distributions for the BCS scheme in 1D. The exact asymptotic
EW/KPZ width distribution [88] is shown with a dashed line. The inset shows
the same distributions on log-normal scales.

EW universality class in one dimension. This implies that the local slopes in the

steady-state landscape are short-range correlated [77]. Hence the density of lo-

cal minima in the synchronization landscape, and in turn the utilization, remains

nonzero in the infinite system-size limit [39, 77]. For a fixed N , the utilization drops

from relatively higher initial value at early times to its steady-state value in a very

short time [Fig. 2.7(a)]. Further, the steady-state utilizations for various systems

converge to the asymptotic system-size independent value. In 1D, since α=0.5 the

utilization, by using Eq. (2.7) as a function of system size, becomes

〈u(N)〉 ≃ 〈u(∞)〉 +
const.

N
(2.15)

as shown in Fig. 2.7(b). For the KPZ model [Eq. (2.8)] 〈u(∞)〉 = 1/4, since in

the steady state the slopes are delta-correlated, resulting in a probability 1/4 for

the configuration in Fig. 2.2(b), corresponding to a local minimum. For the actual

BCS synchronization profile 〈u(∞)〉 ≃ 0.2464 [39, 77], as a result of non-universal

short-range correlations present for the slopes in the specific microscopic model [87]

as can be seen in Fig. 2.8.

In summary, we have shown that the 1D BCS time horizon belongs to the
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Figure 2.7: (a) Utilization in the 1D BCS scheme as a function of time
for various system sizes. (b) Steady-state utilization as a
function of the 1/N2(1−α) as suggested by Eq. (2.7) with the
1D KPZ roughness exponent α=1/2. The dashed line is a
linear fit, 〈u(N)〉 ≈ 0.2464 + 0.2219/N

KPZ universality class as N goes to infinity, then the measurement part of the 1D

BCS scheme is not scalable.

2.3 Two-Dimensional Basic Conservative Synchronization

Network

A natural generalization to pursue is the synchronization dynamics and the

associated landscapes on the networks in higher dimensions. One might ask whether

PDES of two-dimensional phenomena exhibit kinetic roughening of the virtual time

horizon. Preliminary results indicated that this is the case [16, 92]. In this section

we give detailed results when the BCS scheme is extended into a two-dimensional

lattice in which each node has four nearest neighbors. We consider a system with

periodic boundary conditions in both axes as can be seen in Fig. 2.9(a).

The same microscopic rules, i.e., each node increments its local simulated time

by an exponentially distributed random amount when it is a local minima among its

nearest neighbors, are applied to this lattice. As in the one-dimensional case, during

the evolution of the local simulated times correlations between the nodes develop in

the system. One observes a rough time surface in the steady-state of the 2D BCS

network. Figure 2.10(a) shows the contour plot of the simulated time surface for
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Figure 2.8: Slope-slope correlation function for the BCS scheme on a 1D
short-range network for various system sizes.

BCS scheme in 2D. In 2D as well, we observe kinetic roughening of the BCS scheme.

The simulated time surface for a finite system roughens with time in a power-law

fashion. It then saturates after some system-size dependent crossover time to its

system-size dependent steady-state value, as shown in [Fig. 2.11(a)]. Our estimate

for the growth exponent in the early-time regime is β=0.125, significantly smaller

than that of one dimension.

The roughness exponent α for KPZ-like systems have been measured and es-

timated in a number of experiments and simulations [73]. Since exact exponents for

the higher-dimensional KPZ universality class are not available, for reference, we

compare our results to a recent high-precision simulation study by Marinari et al.

[93] on the restricted solid-on-solid (RSOS) model [94], a model believed to belong

to the KPZ class. They found in [93] that α≃0.39 for the 2D RSOS roughness ex-

ponent. While our simulations of the virtual time horizon show kinetic roughening

in Fig. 2.11(a), the scaled plot, suggested by Eq. (2.5), indicates very strong correc-

tions to scaling for the BCS in 2D (inset). Figure 2.11(b) and Fig.2.12 also indicates

that the (KPZ) scaling regime is approached very slowly in the steady-state, which

is not completely unexpected: for the 1D BCS scheme as well, convergence to the
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(b)(a)

Figure 2.9: Communication topologies in 2D. (a) 2D regular network,
where each node is connected to its four nearest neighbors.
(b) SW synchronization network. One random link per node
is added on top of the 2D regular network. Arrowed lines
show the bidirectional random links between the nodes.

Figure 2.10: Synchronization landscapes as contour plots for the 2D BCS
on regular and SW networks of 128x128 nodes. (a) for the
BCS scheme on a regular lattice with only nearest-neighbor
connections (equivalent to p=0); (b) for p=0.1; (c) for p=1.0.

steady-state roughness exponent [Fig. 2.5(a)] and to the KPZ width distribution

[Fig. 2.5(b)] only appears for linear system sizes N > O(103). Here, for the 2D case,

the asymptotic roughness scaling [Fig. 2.11(b)] and width distribution [Fig. 2.12]

has not been reached for the system sizes we could simulate (up to linear system

size N=4096). Nevertheless the trend in the finite-size behavior, and the identical

microscopic rules (simply extended to 2D) suggest that 2D BCS landscape belongs

to the 2D KPZ universality class.

For further evidence, we also constructed the structure factor for the 2D BCS

steady-state landscape. As shown in Fig. 2.13(a), S(kx, ky) exhibits a strong singu-
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Figure 2.11: (a) Time evolution of the width in 2D BCS scheme. The
dashed line indicates the power-law behavior of the width
before saturation with a growth exponent β≈0.125. The inset
shows the scaled plot 〈w2〉 /N2α vs. t/Nz. (b) Steady-state
width of the 2D BCS scheme as a function of the linear
system-size. The dashed line corresponds to the asymp-
totic 2D KPZ scaling with roughness exponent 2α=0.78 as
obtained by high-precision simulations of the RSOS model
[93]. Note the log-log scales.

Figure 2.12: The scaled width distributions for the 2D BCS scheme. The
solid curve is the asymptotic 2D KPZ scaled width distribu-
tion, again from high-precision RSOS simulations [95]. Note
the log-normal scales.
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larity about k=0. For further analysis, we exploited the symmetry of S(kx, ky) that

Figure 2.13: Structure factor for the BCS scheme in 2D. (a) as a func-
tion of the wave number components kx and ky. (b) as a
function of the magnitude of the wave number for differ-
ent system-sizes. The dashed line shows the asymptotic 2D
KPZ behavior for small values of |k| [Eq. (2.16)] with α=0.39
[93]. Note the log-log scales.

it can only depend on |k| =
√

k2
x + k2

y. Hence, we averaged over all directions having

the same wave number |k| to obtain S(|k|). For small wave numbers we found that

it diverges as

S(|k|) ∼ 1

|k|2+2α
, (2.16)

with α = 0.39, as shown in Fig. 2.13(b). This is consistent with the small-k behavior

of the structure factor of the 2D KPZ universality class with roughness exponent

α≃0.39 [93]. As noted above, the scaling of the width and its distribution exhibited

very slow convergence to those of our reference-KPZ system, the RSOS model [93,

95]. This is likely the effect of the non-universal and surprisingly large contributions

coming from the large-k modes, leading to very strong corrections to scaling for the

system sizes we were able to study in 2D. Looking directly at the small-|k| behavior

of S(|k|) is undisturbed by the larger-|k| modes, hence the agreement with the 2D

KPZ scaling is relatively good.

The steady-state utilization (density of local minima) in the 2D BCS synchro-

nization landscape approaches a nonzero value in the limit of infinite number of

nodes, 〈u(∞)〉 ≃ 0.1201 as can be seen in Fig. 2.14(a). This is consistent with the

general approximate behavior 〈u(∞)〉 ≃ const./d on hypercubic lattices in d dimen-

sion [64, 92], i.e., 〈u(∞)〉 is approximately inversely proportional to the coordination
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Figure 2.14: (a) The time evolution of the steady-state utilization in 2D
BCS scheme for various system sizes. (b) The steady-state
utilization in the 2D BCS scheme as a function of 1/N2(1−α) as
suggested by Eq. (2.7) with the 2D KPZ roughness exponent
α=0.39. The dashed line is a linear fit, 〈u(N)〉 ≈ 0.1201 +
0.1585/N1.22.

number. The system-size dependence of the steady state utilization in the 2D BCS

also follows Eq. (2.7). As shown in Fig. 2.14(b), for a two-dimensional BCS scheme,

the utilization becomes

〈u(N)〉 ≃ 〈u(∞)〉 +
const.

N1.22
(2.17)

where we have used the 2D KPZ roughness exponent α=0.39 [93].

We have seen that similar to the 1D case, the 2D BCS scheme also exhibits

a finite progress rate but the width diverges as the system size goes to infinity,

hindering measurement scalability.

2.4 The K-random Synchronization Network

In order to obtain an analytically tractable scalability model for the BCS,

Greenberg et al introduced the K-random interaction network model [64]. In this

model at each update attempt PEs compare their local simulated times to those

of a set of K randomly chosen PEs. This set is rechosen for each update attempt

(i.e., the network is “annealed”), even if a previous update attempt has failed. It

was shown that in the limit of t→∞ and N→∞, the utilization (or the average rate

of progress) converges to a non-zero constant, 1/(K+1) [Fig. 2.15(a)]. They also

suggested that the scaling properties of K-random model as t→∞ and N→∞ are

universal and hold for regular lattices as well. But changing the interaction topology
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from the nearest neighbor PEs on a regular lattice to randomly chosen PEs changes

the universality class of the time horizon. Simply, the underlying topology has a

crucial effect on the universal behavior of the time horizon. The random (annealed)

interaction topology of the K-random model results in a mean-field-like behavior,

where the simulated time surface is uncorrelated and has a finite width in the limit

of an infinite number of PEs [Fig. 2.15(b)]. Their conjecture for the width does not

hold, thus, the BCS scheme for regular lattices cannot be equivalently described by

the K-random model (at least not below the upper critical dimension of the KPZ

universality class [95]).
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Figure 2.15: The steady-state observables in K-random network. (a) uti-
lization as a function of system size. (b) width as a function
of system size.

However, we were inspired by [64] to change the communication topology of the

PEs by introducing random links in addition to the necessary short-range connec-

tions. In the next chapter we present our modification to the original conservative

scheme on regular lattices to achieve a fully scalable algorithm where both scalability

conditions are satisfied.



CHAPTER 3

SYNCHRONIZATION IN SMALL-WORLD NETWORKS

The divergent width of the synchronization landscapes in regular networks for very

large systems, as discussed in the previous chapter, is the result of the divergent

lateral correlation length ξ of the virtual time surface reaching the system size N

in the steady-state [73, 79, 80, 81, 82]. To de-correlate the simulated time horizon,

first, we modify the virtual communication topology of the PEs. The resulting

communication network must include the original short-range (nearest-neighbor)

connections to faithfully simulate the dynamics of the underlying system. In the

modified network, the connectivity of the nodes (the number of links of a node)

should remain non-extensive (i.e., only a finite number of virtual neighbors per

node is allowed). This is in accordance with our desire to design a PDES scheme

where no global intervention or synchronization is employed (PEs can only have

O(1) communication exchanges per step). It is clear that the added synchronization

links (or at least some of them) have to be long range. Short range links alone would

not change the universality class and the scaling properties of the width of the time

horizon. One can satisfy this condition by selecting the additional links (called

small-world links) randomly among all the nodes in the network. Also, fluctuations

in the individual connectivity should be avoided for load balancing purposes, i.e.,

requiring the same number of added links (e.g., one) for each node is a reasonable

constraint.

One may wonder how the collective behavior of the PDES scheme would change

if each node was connected to the one located at the “maximum” possible distance

away from it (N/2 on a ring) [Fig. 3.1(a)]. Consider a linear coarse-grained Langevin

equation with Gaussian noise where the effective strength of the added long-range

links is γ,

∂tτi(t) = (τi+1 + τi−1 − 2τi) − γ(τi − τi+N/2) + ηi(t) , (3.1)

with periodic boundary conditions. Since Eq. (3.1) is translationally invariant,

Fourier transformation decouples the equations for different wave numbers k and

27
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(a) (b) (c)

Figure 3.1: (a) Maximal-distance network in 1D where each node is con-
nected to nearest neighboring nodes and to the node which
is at the maximum distance. (b) Fully connected network
where each node is connected to every other node in the net-
work. (c) Small-world (SW) synchronization network in 1D,
where each node is connected to a randomly chosen one in
addition to the nearest neighbors.

one obtains for the steady-state structure factor (see Appendix A)

S(k) =
D

2[1 − cos(k)] + γ[1 − cos(kN/2)]
, (3.2)

where k = (2πn)/N , n = 0, 1, 2, . . . , N−1 as before (and N is even for simplicity).

Then for the average width we find

〈w2〉 =
1

N

∑

k 6=0

S(k) =
1

N

∑

k 6=0

D

2[1 − cos(k)] + γ[1 − cos(kN/2)]
. (3.3)

Separating the terms with even and odd n values above, we find

〈w2〉 =
1

N

∑

n=odd

D

2[1 − cos(2πn/N)] + 2γ

+
1

N

∑

n=even

D

2[1 − cos(2πn/N)]
. (3.4)

The first sum yields a finite N -independent value in the N→∞ limit. The second

sum, on the other hand, is identical to the width of the EW model on a regular net-

work of size N/2. Thus, in the large N limit the width for the “maximal-distance”

connected network [Fig. 3.1(a)] diverges as 〈w2(N)〉≃DN/24. Indeed, one can real-

ize, that such regularly patterned long-range links make the network equivalent to a
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2×(N/2) quasi one-dimensional system with only nearest-neighbor interactions and

helical boundary conditions. The above extreme case suggests, that the maximal-

distance synchronization network cannot work either.

Now instead, consider the scenario where each node is connected to every

other node in the network by a “weak” link, i.e., constructing a “fully” connected

network as shown in Fig. 3.1(b). In this case we can rewrite the Langevin equation

in Eq. (3.1) by using an effective strength of links, γ/N ,

∂tτi(t) = (τi+1 + τi−1 − 2τi) −
γ

N

N
∑

j=1

(τi − τj) + ηi(t) . (3.5)

Performing the summation above yields an exact mean-field-like coupling, where

each node is coupled to the average height:

∂tτi(t) = (τi+1 + τi−1 − 2τi) − γ(τi − τ̄ ) + ηi(t) , (3.6)

where τ̄ =
∑N

j=1 τj is the average height. For the steady-state structure factor one

finds (see Appendix A)

S(k) =
D

2[1 − cos(k)] + γ
. (3.7)

Then by using the relation between the structure factor and the width [Eq. 3.3] one

obtains

〈w2〉 =
1

N

∑

k 6=0

S(k) =
1

N

∑

k 6=0

D

2[1 − cos(k)] + γ
≃

∫ ∞

−∞

dk

2π

D

k2 + γ
=

D

2
√

γ
. (3.8)

The above relation between the mean-field coupling constant γ and the width shows

that for a non-zero γ the width is finite in the thermodynamic limit. But connecting

each node in PDES to every other node would be cost-inefficient and cumbersome in

terms of communication times. As we discuss in the next section, one can construct

an “effectively” fully connected and yet cost-efficient network which has a finite

width and relatively high progress rate by only employing a few random links.
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3.1 One-Dimensional Small-World-Connected Synchroniza-

tion Network

As we have seen in Chapter 2 our attempts to make the PDES fully scalable

have failed because the PDES on short-range network is not measurement scalable

(width is infinite for an infinite system). One of the proposed networks discussed

in the previous section, the maximal-distance network, fails as a candidate for a

fully scalable synchronization scheme because it is effectively equivalent to a short-

range network. On the other hand, the fully connected network, is very inefficient in

performance although it is measurement scalable. Motivated by the social networks

we propose a network topology in which each node is connected to exactly one

another randomly chosen node in addition to the nearest neighbors, resulting in a

SW-like synchronization network. As we shall see, adding one random link to every

node is cost-efficient and makes the network an “effectively” fully-connected one.

One of the basic structural characteristics of SW-like networks is the “low

degree of separation” between the nodes. The most commonly used observables

to analyze this property are the average shortest path length, δavg(N), and the

maximum shortest path length, δmax(N). The shortest path length between two

nodes is defined as the minimum number of nodes one has to visit in order to go

from one of the nodes to the other. The average shortest path length is the average

of all these possible shortest paths between the nodes in the network. The maximum

shortest path length, also known as diameter of the network, is the length of the

longest among the shortest paths in the network. Both of these observables scale

logarithmically with the system-size N in SW-like networks [96]. The system-size

dependence of these path lengths for our one-dimensional SW network, in which we

have both nearest neighbors and random SW links, is logarithmic as expected, see

Fig. 3.2(a)-(b).

We now describe the modified algorithmic steps for the SW-connected PEs

[8]. In the PDES on SW synchronization network, in every parallel time step each

PE with probability p compares its local simulated time with its full virtual neigh-

borhood, and can only advance if it is the minimum in this neighborhood, i.e., if

τi(t) ≤ min{τi−1(t), τi+1(t), τr(i)(t)}, where r(i) is the random connection of PE i.
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Figure 3.2: (a) Average and maximum shortest path lengths as a function
of the number of nodes for the SW synchronization network
in 1D, as described in the text. The latter is also referred to
as the diameter of the network. The solid and dashed lines
both indicate the logarithmic dependence. Note the normal-
log axes. (b) Histogram for the length of the shortest paths
in one realization of the network with system size N=104. The
dashed curve is appropriately fitted Gumbel distribution for

minima in the form f(δ) = 1
b
e
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b where a∼=12.2 and b∼=1.48.

With probability (1 − p) each PE follows the original scheme, i.e., the PE then can

advance if τi(t) ≤ min{τi−1(t), τi+1(t)}. Our network model including the nearest

neighbors and random SW links can be seen in Fig. 3.1(c). Note that the occasional

extra checking of the simulated time of the random neighbor is not needed for the

faithfulness of the simulation. It is merely introduced to control the width of the

time horizon. The occasional checking of the virtual time of the random neighbor

(with rate p) introduces an effective strength J = J(p) for these links. Note that this

is a dynamic “averaging” process controlled by the parameter p and can possibly

be affected by nonlinearities in the dynamics through renormalization effects. The

exact form of J(p) is not known. The only plausible properties we assume for J is

that it is a monotonically increasing function of p and is only zero when p=0.

In what follows, we focus on the characteristics of the dynamics on the network.

As we have seen for the one-dimensional ring, the communication protocol between

the nodes (up to linear terms) leads to simple relaxation, governed by the Laplacian

on the regular grid. Random communication links give rise to analogous effective

couplings between the nodes, corresponding to the Laplacian on the random part of
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the network. Thus, the large-scale properties of the virtual time horizon of our SW

scheme are governed by the effective Langevin equation

∂tτ̂i = ∇2τ̂i −
∑

j

Jij(τ̂i − τ̂j) + ... + ηi(t) , (3.9)

where the ... stands for infinitely many non-linear terms (involving non-linear inter-

actions through the random links as well), and Jij is proportional to the symmetric

adjacency matrix of the random part of the network: Jij=J(p) if sites i and j are

connected by a random link and Jij=0 otherwise. For our specific SW construction

each node has exactly one random neighbor, i.e., there are no fluctuations in the

individual connectivity (degree) of the nodes. Our simulations (to be discussed be-

low) indicate that when considering the large-scale properties of the systems, the

Laplacian on the random part of the network generates an effective coupling γ to

the mean [8]. At the level of the structure factor, it corresponds to an effective mass

γ (in a field-theory sense)

S(k) ∝ 1

γ + k2
, (3.10)

where γ=γ(p) is a monotonically increasing function of p with γ(0)=0.

We emphasize that the above is not a derivation of Eq. (3.10), but rather

a “phenomenological” description of our findings. It is also strongly supported

by exact asymptotic results for the (linear) EW model on SW networks, where

the effect of the Laplacian on the random part of the network is to generate a

mass [27, 29]. The averaging over the quenched network ensemble, however, can

introduce nontrivial scaling and corrections in the effective coupling [27, 28, 29]. In

our case, this is further complicated by the nonlinear nature of the interaction. The

results of “simulating the simulation”, however, suggest that the dynamic control

of the link strength and nonlinearities only give rise to a renormalized coupling and

a corresponding renormalized mass. Thus, the dynamics of the BCS scheme with

random couplings is effectively governed by the EW relaxation in a small-world

[27, 29, 28]. From Eq. (3.10) it directly follows that the lateral correlation length in

the infinite system-size limit

ξ ∼ γ−1/2 , (3.11)
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i.e., becomes finite for all p 6=0 [Fig. 2.3(b)]. The presence of the effective mass term

in the structure factor Eq. (3.10) implies that limk→0 S(k) < ∞, that is, there are

no large amplitude long-wavelength modes in the surface. Consequently, the width

〈w2〉 = (1/N)
∑

k 6=0 S(k) is also finite. Our simulated time landscapes indeed show

that they become macroscopically smooth when SW links are employed [Fig. 2.3(b)],

compared to the the same dynamics with only short-range links [Fig. 2.3(a)].

Figure 3.3: Structure factor for the 1D SW synchronization scheme with
(a) p=0.1 and (b) p=1. The insets show 1/S(k) vs. k2 for
small values of k, confirming the coarse-grained prediction
Eq. (3.10).

In the simulations, we typically performed averages over 10-100 network real-

izations, and compared the results to those of individual ones. Our results indicate

that the observables we studied (the width and its distribution, the structure factor,

and the utilization) display strong self-averaging properties, i.e., for large enough

systems, they become independent of the particular realization of the underlying

SW network. Simulation results for the structure factor, S(k), for the SW syn-

chronization scheme are shown in Fig. 3.3(a) and (b). If an infinitesimally small p

is chosen, S(k) approaches a finite constant in the limit of k→0, and in turn, the

virtual time horizon becomes macroscopically smooth with a finite width.

A possible (phenomenological) way to obtain the correlation length is to fit

our structure factor data to Eq. (3.10), more specifically, by plotting 1/S(k) versus

k2, which exhibits a linear relationship. By a linear fit, γ is then the ratio of the

intercept and the slope (insets in Fig. 3.3). Alternatively, one can confirm that

the massive propagator Eq. (3.10) indeed leads to an exponential decay in the two-
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Figure 3.4: The spatial two-point correlation function as a function of

the Euclidean distance l between the nodes for two different
values of p, indicating an exponential decay with an average
correlation length ξ≈27 and ξ≈1.6 for p=0.1 and p=1.0, respec-
tively. The number of nodes is N=16,384. The inset shows
the same data in log-normal scale.

point correlation function from which the correlation length can also be extracted

[Fig. 3.4]. In our case with a system-size N=16,384, ξ≈27 for p=0.1 and ξ≈1.6 for

p=1. Figure 3.5(c) shows the correlation length extracted from the structure factor

S(k) as a function of p for different system-sizes.

An alternative way to determine the correlation length is using the finite-size

scaling of the width 〈w2〉. From dimensional analysis it follows that 〈w2〉 has length

dimension in 1D. There are two length scales in the system: the linear system size

N and the correlation length ξ of an infinite system. For p = 0, 〈w2〉∼N , while for

p>0 and N→∞, 〈w2〉∼ξ. For non-zero p and finite N the scaling of the steady-state

width can be expected [28] to follow

〈

w2
〉

= Ng(ξ/N) , (3.12)

where g(x) is a scaling function such that

g(x) ∼











x if x≪1

const. if x≫1
. (3.13)

For non-zero p and for sufficiently small systems (N≪ξ(p)) one can confirm that
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the behavior of the width follows that of the system without random links 〈w2〉∼N

[Fig. 3.6(a)]. For large-enough systems, on the other hand, we can extract the

p-dependence of the infinite-system correlation length as 〈w2〉∼ ξ(p) [Fig. 3.6(b)],

yielding

ξ(p) ∼ p−s , (3.14)

where s≈0.84.

We then studied the data collapse as proposed by Eq. (3.12) by plotting 〈w2〉/N
vs. 1/psN . In fact, we performed this rescaling originating from both raw data sets

Fig. 3.6(a) and (b). The resulting scaled data points in Fig. 3.7(a) and (b), of

course, are identical in the two figures, but the lines connect data points with the

same value of p in Fig. 3.7(a) and with the same value of N in Fig. 3.7(b). These

scaled plots in Fig. 3.7 indicate that there are very strong corrections to scaling:

data for larger p or smaller N values “peel off” from the proposed scaling form in

Eq. (3.13) relatively quickly. These strong corrections are possibly the result of the

nonlinear nature of the interaction between the nodes on the quenched network. We

note that the linear EW model on identical networks exhibits the scaling proposed

in Eq. (3.12) and Eq. (3.13) without noticeable corrections [28] [Fig. 3.8(a) and (b)].

The non-zero γ, leading to a finite correlation length, ξ, ensures a finite width
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Figure 3.6: (a) The average steady-state width in the 1D SW synchro-
nization landscape as a function of the system size for differ-
ent values of p in the range of [10−3, 10−1]. The dashed line
indicates the EW/KPZ scaling, corresponding to the small
system-size behavior. (b) The average steady-state width in
the 1D SW synchronization landscape as a function of p for
different values of N in the range of [40, 104]. The dashed line
indicates the best-fit power law in the asymptotic large-N
small-p regime to extract the correlation length exponent s,
according to Eqs. (3.12)-(3.14).

in the infinite system-size limit. Our simulations show that the width saturates to

a finite value for p>0 [Fig. 3.9(a)]. The distribution of the width P (w2) changes

from the EW/KPZ distribution to a delta function for non-zero values of p as the

system size goes to infinity. Figure 3.10(a) and (b) shows the width distributions for

p=0.1 and p=1, respectively. The scaled width distributions (to zero mean and unit

variance), however, exhibit the convergence to a delta function through nontrivial

shapes for different values of p. For p=0.1 [Fig. 3.11(a)] the distributions appear to

slowly converge to a Gaussian as the system-size increases. For p=1 [Fig. 3.11(b)],

the trend is opposite up to the system sizes we could simulate; as the system-size

increases, the distributions exhibit progressively non-Gaussian features (closer to an

exponential) around the center up to N=106. Note that not only the average width

〈w2〉, but also the full distribution P (w2) is self-averaging, i.e., is independent of the

particular realization of the underlying SW network.

To get some insight into the possible role of the disorder in approaching the

limit distribution of the width, we studied the two-point function for individual pair

of nodes. Note, that by construction, the observable previously considered, G(l),

is the site (or spatially) averaged two-point function over all nodes with Euclidean
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Figure 3.7: The scaled versions of Fig. 3.6(a) and (b), as proposed by
Eq. (3.12) and Eq. (3.14) by plotting 〈w2〉 /N vs. 1/psN with
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Fig. 3.6(b) and (b), respectively. The dashed line corresponds
to the asymptotic small-x behavior of the scaling function g(x)
[Eq. (3.13)].

distance l, G(l)= 1
N

∑N
i=1〈(τi − τ̄ )(τi+l − τ̄ )〉. If the height values on the nodes for a

fixed network realization are sufficiently weakly correlated, the width distribution

should converge to a Gaussian, governed by the central limit theorem [97, 98]. As

we saw above, for larger values of p, this may not be the case, at least for finite

systems.

In order to have some measure how the individual terms in the width are

correlated, w2=(1/N)
∑N

i=1(τi − τ̄ )2, we constructed the two-point function for all

sites i for a few chosen separation l [Fig. 3.12] for a fixed network realization. Of

course, as already discussed, averaging over all i, will yield an exponential decay as

a function of l. Now, instead, we focus on the full two-point correlation “profile”

for a given separation l. As can be seen in Fig. 3.12(a), for p=0.1, the node-

to-node fluctuations in the two-point correlation profile, compared to their spatial

average G(l), are small. With the increasing strength of the disorder (p=1), however,

certain sites develop abnormally large, frozen correlations as shown in Fig. 3.12(b).

The deviation of the two-point correlations for these few nodes, from the mean

G(l), is much larger than those for the other nodes, and is comparable to the mean

itself. This property can work “against” the necessary conditions of the central limit

theorem and, thus, can have a strong effect on the convergence (or the apparent lack
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Figure 3.8: (a) Steady-state width for linear EW model as a function
of the system-size from [28] for comparison. The solid lines
from are from theoretical calculations and the symbols from
simulations. The dashed line shows the behavior of the
width when there is no SW links, namely the BCS scheme
(short-range network) (b) The scaled version of (a) by us-
ing Eq. (3.12) and Eq. (3.13). For the linear EW model the
scaling does not have any noticeable corrections.

of it) of the width distribution to a Gaussian.

The effect of the random communication links on the utilization can be un-

derstood as follows. According to the algorithmic rules, the virtual times of the full

network neighborhood (including the random neighbor) are checked with probabil-

ity p, while with probability (1−p) only short-ranged synchronization is employed.

Thus, the average progress rate of the simulated times becomes

〈u〉 = (1 − p)〈Θ(−φi−1)Θ(φi)〉 + p〈Θ(−φi−1)Θ(φi)Θ(τr(i) − τi)〉 . (3.15)

Note that the disorder (network) averaging makes the right hand side indepen-

dent of i. In the presence of the SW links the regular density of local minima

〈Θ(−φi−1)Θ(φi)〉 remains nonzero (in fact, increases compared to the short-range

synchronized BCS scheme) [8, 87, 99]. Thus, for an infinitesimally small p, the

utilization, at most, can be reduced by an infinitesimal amount, and the SW-

synchronized simulation scheme maintains a nonzero average progress rate. This is

favorable in PDES where global performance requires both finite width and nonzero

utilization. With the SW synchronization scheme, both of these objectives can be

achieved. For example, for p=0.1 〈u(∞)〉 ≃ 0.242, while for p=1.0 〈u(∞)〉 ≃ 0.141.
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Figure 3.9: The steady-state width as a function of system size for 1D
SW synchronization network as a function of system size.
The width saturates to finite values as long as p 6= 0. The
dashed line shows the power-law divergence for BCS in 1D.
Note the log-log scales.

The steady-state utilization as a function of system size for various values of p can

be seen in Fig. 3.13.

3.2 Two-dimensional Small-World-Connected Synchroniza-

tion Network

The de-synchronization (roughening of the virtual time horizon) again mo-

tivates the introduction of the possibly long-range, quenched random communica-

tion links on top of the 2D regular network. Each node will have exactly one (bi-

directional) random link as illustrated in Fig. 2.9(b). The actual “microscopic” rules

are analogous to the 1D SW case: with probability p each node will check the local

simulated times of all of its neighbors, including the random one, and can increment

its local simulated time by an exponentially distributed random amount only if it

is a “local” minimum (among the four nearest neighbors and its random neighbor).

With probability (1−p), only the four regular lattice neighbors are checked for the

local minimum condition.

The effect of the synchronization through the random links is, again, to stop

kinetic roughening and to suppress fluctuations in the synchronization landscapes.
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Figure 3.10: Steady-state width distributions in the 1D SW synchroniza-
tion scheme for (b) p=0.1 and for (c) p=1.0. The distri-
butions were constructed using ten different network real-
izations, except for N=106, where only one realization was
obtained due to computational limitations. All width dis-
tributions, however, indicated self-averaging.
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Figure 3.11: Steady-state width distributions for the 1D SW synchro-
nization scheme scaled to zero mean and unit variance for
(a) p=0.1 and (b) p=1.0. The dashed curves are similarly
scaled Gaussians for comparison.

Contour plots of the synchronization landscapes are shown in Fig. 2.10(b) and (c)

for p=0.1 and p=1, respectively. Our results indicate that for any nonzero p the

width of the surface approaches a finite value in the limit of N→∞ [Fig. 3.14(a)]. At

the same time, the distribution approaches a delta-function in the large system-size

limit as shown in Fig. 3.15(a) and (b). The scaled distributions (to zero mean and

unit variance) again show that at least for the finite systems we observed, the shape

of these distribution differs from a Gaussian [Fig. 3.16(a) and (b)]. The deviation
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Figure 3.12: Two-point correlation function for each node i for various
separation l for a fixed 1D SW synchronization network with
size N=16, 384 (a) p=0.1 and (b) p=1. The horizontal lines
correspond to spatial average G(l) for each l.

from the Gaussian around the center of the distribution is stronger for a larger value

of p where the influence of the quenched random links are stronger. Note that for

the 1D SW landscapes as well, the width distribution only displayed a crossover

to Gaussian behavior for smaller values of p and for very large linear system sizes

(N > O(104). In the 2D SW case, these linear system sizes are computationally not

achievable, and the convergence to a Gaussian width distribution remains an open

question.

The underlying reason for the finite width is again a finite average correlation

length between the nodes. The 2D structure factor exhibits a massive behavior,

i.e., S(|k|) approaches a finite value in the limit of k→0 [Fig. 3.17(a) and (b)].

For small wave numbers, the approximate behavior of the structure factor is again

S(|k|) ∝ 1/(|k|2 + γ) as can be seen in the inset of Fig. 3.17(b), with strong finite-

size corrections to γ. The relevant feature of the synchronization dynamics on a SW

network is the generation of the effective mass γ. Nonlinearities can give rise to a

renormalized mass, but the relevant operator is the Laplacian on the random part

of the network.

In the 2D SW synchronization scheme the steady-state utilization is smaller

than its purely 2D counterpart (BCS in 2D), as a result of the possible additional

checking with the random neighbors. For small values of p, however, it is reduced

only by a small amount, and remains nonzero in the limit of an infinite number of
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Figure 3.13: Steady-state utilization of SW synchronization network in
1D as a function of system-size for three different values of
p=0 (BCS), p=0.1 and p=1.

nodes [Fig. 3.18]. For example, for p=0.1 〈u〉∞≃0.1198, while for p=1 〈u〉∞≃0.084.

3.3 Synchronization in scale-free networks

The Internet is a spontaneously grown collection of connected computers. The

number of (only) webservers by February 2003 reached over 35 million [100]. The

number of PC-s in use (Internet users) surpassed 660 million in 2002, and it is

projected to surpass one billion by 2007 [101]. The idea for using it as a giant

supercomputer is rather natural: many computers are in an idle state, running at

best some kind of screen-saver software, and the “wasted” computational time is

simply immense. Projects such as SETI@home or the GRID consortium [17] are

targeting to harness the power lost in screen-savers.

Most of the problems solved currently with distributed computation on the

Internet are “embarrassingly parallel” [16] , i.e., the computed tasks have little or no

connection to each other similar to starting the same run with a number of different

random seeds, and at the end collecting the data to perform statistical averages.

However, before complex problems can be solved in real time on the Internet a
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Figure 3.15: Steady-state width distributions in the 2D SW synchroniza-
tion scheme for (a) p=0.1 and for (b) p=1.0 for various system
sizes.

number of challenges have to be solved, such as the task allocation problem which

is rather complex by itself [66].

Here one can ask the following question: Given that task allocation is resolved

and the PE communication topology on the internet is a scale-free network, what are

the scalability properties of a conservative synchronization scheme on such networks?

Here we present numerical results, for the conservative PDES scheme, as measured

on a model of scale-free networks, namely the Barabási-Albert model (BA) [5, 102].
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Figure 3.16: Steady-state width distributions in the 2D SW synchroniza-
tion scheme scaled to zero mean and unit variance for (a)
p=0.1 and for (b) p=1.0. The dashed curves are similarly
scaled Gaussians for comparison.

Figure 3.17: (a) Steady-state structure factor for the 2D SW scheme as a
function of the wave-vector components kx and ky for p=1.0.
(b) Structure factor as a function of magnitude of the wave
vector, |k|, for the 2D SW synchronization scheme for p=1.0.
The inset shows 1/S(k) vs. |k|2 for small values of |k|.

This network is created through the stochastic process of preferential attachment:

to the existing network at time t of N nodes, attaches the N+1st node with m

links (“stubs”) at time t+1, such that each stub attaches to a node with probability

proportional to the existing degree of the node. Here we will only present the

m=1 case, when the network is a scale-free tree. Once we reach a given number of

nodes in the network, we stop the process and use the random network instance to

simulate the synchronization, using the evolution equation [Eq. (2.1)) for the time
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Figure 3.18: Steady-state utilization of SW synchronization network in
2D as a function of system-size for three different values of
p=0 (BCS), 0.1 and 1.

horizon. While in case of regular topologies, the degree of a node is constant, e.g.

for d-dimensional “square” lattices, P (Nd)(k) = 2dδk,2d , for the BA network, it is

a power law in the asymptotic (N→∞) limit : P BA(k) ≃ 2m2k−3. The condition

for a site to be updated, i.e., that its virtual time is a local minimum, is a local

property, and thus we expect that the utilization itself be correlated with local

structural properties of the graph, such as the degree distribution. Figure 3.19

shows the steady state (t→∞, on a fixed BA network of N nodes) values of the

average utilization as function of the network size N . Notice that strictly speaking,

the conservative PDES scheme is computationally non-scalable. An empirical fit

suggest that 〈u(N)〉 = 〈u(N, t=∞)〉 ≃
[

ln
(

aN b
)]−1

with a ≃ 3.322 and b = 0.902,

i.e., the computation is only logarithmically (or marginally) non-scalable. For a

system of N=103 nodes we have found a steady state utilization (for the worst case

scenario) of 〈u〉=0.1328 (13.3% efficiency), while for a system of a million nodes,

N=106, the utilization dropped only to 〈u〉=0.073 (7.3% efficiency), by less than half

of its value. For practical purposes the conservative PDES scheme can be considered

computationally scalable, and this type of non-scalability we will call logarithmic (or

marginal) non-scalability.

Figure 3.20 shows the scaling of the width of the fluctuations for the time hori-

zon as function of time, and the scaling of its value in the steady-state as function of
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system size (inset). Notice, that while the steady state width diverges to infinity, it

only does so logarithmically, 〈w2(N, t=∞)〉 ≃
[

ln
(

cNd
)]

with c≃1.25 and d≃0.401.

Some specific values: 〈w2(103, t=∞)〉 ≃ 3.01, 〈w2(105, t=∞)〉≃4.78. This means

that the measurement phase of the conservative PDES scheme on a scale-free net-

work is non-scalable either, however, it is so only logarithmically, and for practical

purposes the scheme can be considered scalable. Overall, the conservative PDES

scheme has logarithmic (or marginal) non-scalability on scale-free networks.
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Figure 3.20: Behavior of the time horizon width for the scale-free BA
network (scale-free tree with m=1). The inset shows the
scaling of the steady-state width as a function of system
size, N (note the log-normal scale on the inset).



CHAPTER 4

EXTREME FLUCTUATIONS IN SMALL-WORLD

NETWORKS

Large fluctuations in networks are to be avoided for many reasons such as scala-

bility or stability. In the absence of global intervention or control, this can be a

difficult task. Motivated by the results in Chapter III [8] for small-world (SW) [19]

synchronized autonomous systems in the context of scalable parallel computing, we

investigate the steady-state properties of the extreme fluctuations in SW-coupled

interacting systems with relaxational dynamics [103, 104]. Since the introduction

of SW networks [19] it has been well established that such networks can facilitate

autonomous synchronization [36, 37, 105]. In addition to the average “load” in the

network, knowing the typical size and the distribution of the extreme fluctuations

[106, 107, 108] is of great importance from a system-design viewpoint, since failures

and delays are triggered by extreme events occurring on an individual node.

Relationship between extremal statistics and universal fluctuations in corre-

lated systems has been studied intensively [109, 110, 111, 112, 113, 114, 115, 116,

118, 119, 120, 121, 122, 123, 124, 125]. The focus of a number of these studies was

to find connections, if any, between the probability distribution of global observ-

ables or order parameters (such as the width in surface growth problems [73] or the

magnetization in magnetic systems [126]) and known universal extreme-value limit

distributions [106, 107, 108]. Recent analytic results demonstrated [118, 121] that,

in general (except for special cases [116, 117]), there are no such connections. Here

we discuss to what extent SW couplings (extending the original dynamics through

the random links) lead to the suppression of the extreme fluctuations of the local

order parameter or field variable in various noisy environments. We illustrate our

findings on the actual PDES synchronization problem in scalable parallel comput-

ing [8]. In Sec. 4.1 we review the well-known extreme-value limit distributions for

exponential-like and power-law-tail distributed random variables. In Sec. 4.3 we

discuss the results [103, 104] on the scaling behavior of the extreme fluctuations and

48
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their distribution. for the Edwards–Wilkinson model [86] on SW networks [27] with

exponential-like noise. In Sec. 4.3 we apply these results to study the extreme load

fluctuations in SW-synchronized PDES schemes [40, 41], applicable to high perfor-

mance parallel architectures and large-scale grid-computing networks. In Sec. 4.4

we extend our studies [103, 104] and consider the synchronization problem in the

presence of power-law tailed noise.

4.1 Extreme-Value Distributions for Independent Random

Variables

4.1.1 Exponential-like variables

First, we consider the case when the individual complementary cumulative

distribution P>(x) (the probability that the individual stochastic variable is greater

than x) decays faster than any power law, i.e., exhibits an exponential-like tail in

the asymptotic large-x limit. (Note that in this case the corresponding probability

density function displays the same exponential-like asymptotic tail behavior.) We

will assume P>(x) ≃ e−cxδ

for large x values, where c and δ are constants. Then

the cumulative distribution Pmax
< (x) for the largest of the N events (the probability

that the maximum value is less than x) can be approximated as [122, 127, 128]

Pmax
< (x) = [P<(x)]N = [1 − P>(x)]N = eN ln[1−P>(x)] ≃ e−NP>(x) , (4.1)

where one typically assumes that the dominant contribution to the statistics of

the extremes comes from the tail of the individual distribution P>(x). With the

exponential-like tail in the individual distribution, this yields

Pmax
< (x) ≃ e−e−cxδ+ln(N)

. (4.2)

The extreme-value limit theorem states that there exists a sequence of scaled vari-

ables x̃ = (x−aN )/bN , such that in the limit of N→∞, the extreme-value probabil-

ity distribution for x̃ asymptotically approaches the Fisher–Tippett–Gumbel (FTG)
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distribution [106, 107]:

P̃max
< (x̃) ≃ e−e−x̃

, (4.3)

with mean 〈x̃〉=γ=0.577 . . . (Euler constant) and variance σ2
x̃ = 〈x̃2〉−〈x̃〉2 = π2/6.

From Eq. (4.2), one can deduce2 [128] that to leading order the scaling coefficients

are aN =
[

ln(N)
c

]1/δ
and bN = (δc)−1

[

ln(N)
c

](1/δ)−1
. The average value of the largest

of the N original variables then scales as

〈xmax〉 = aN + bNγ ≃
[

ln(N)

c

]1/δ

(4.4)

(up to O( 1
ln(N)

) correction) in the asymptotic large-N limit. When comparing with

experimental or simulation data, instead of Eq. (4.3), it is often convenient to use

the form of the FTG distribution which is scaled to zero mean and unit variance,

yielding

P̃max
< (y) = e−e−(ay+γ)

, (4.5)

where a = π/
√

6 and γ is the Euler constant. In particular, the corresponding FTG

density then becomes

p̃max(y) = ae−(ay+γ)−e−(ay+γ)

. (4.6)

4.1.2 Power-law tailed variables

Now consider independent identically distributed random variables where the

tail of the complementary cumulative distribution decays in a power law fashion, i.e.,

P>(x) ≃ A/xµ for large values of x. Assuming again that the dominant contribution

to the statistics of the extremes comes from the tail of the individual distribution

[122, 127, 128], Eq.(4.1) yields

Pmax
< (x) ≃ e−NP>(x) ≃ e−NA/xµ

. (4.7)

Introducing the scaled variable x̃ = x/bN , where bN = (AN)1/µ, yields the standard

form of the so called Fréchet distribution for the extremes in the asymptotic large-N

2Note that for δ 6=1, while the convergence to Eq. (4.2) is fast, the convergence for the appro-
priately scaled variable to the universal FTG distribution Eq. (4.3) is extremely slow.
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limit [106, 108]

P̃max
< (x̃) = e−1/x̃µ

, (4.8)

and the corresponding probability density

p̃max(x̃) =
µ

x̃µ+1
e−1/x̃µ

. (4.9)

One can note that the tail behavior of the extremes has been inherited from that

of the original individual variables, i.e., p̃max(x̃) ∼ 1/x̃µ+1 for large values of x̃. The

first moment of the extreme exist if µ > 1 and for the average value of the largest

of the N original power-law variables one finds

〈xmax〉 = bN 〈x̃〉 ≃ Γ(1 − 1/µ)(AN)1/µ ∼ N1/µ (4.10)

where Γ(z) is Euler’s gamma function. For comparison with experimental or sim-

ulation data it is often convenient to use an alternative scaling for the extremes

y = x/〈xmax〉, yielding collapsing (N -independent) probability density functions

similar to Eq.(4.9)

p̃max(y) =
µ

Γµ(1 − 1/µ)yµ+1
e−1/(Γµ(1−1/µ)yµ) . (4.11)

4.2 Extreme Fluctuations in 1D BCS Network

We consider again the simplest stochastic model with linear relaxation on a

SW network used in the previous chapter [Eq. (3.9)]. In this chapter in addition to

the width, we will study the scaling behavior of the largest fluctuations (e.g., above

the mean) in the steady-state

〈∆max〉 ≡ 〈τmax − τ̄ 〉 . (4.12)

As discussed in Chapter 2 and 3, Eq. (3.9) (and its generalization with a KPZ-

like nonlinearity [84]) governs the steady-state progress and scalability properties of

a large class of PDES schemes [8, 39, 77, 79, 129]. In this context, the local height

variables {τi(t)}N
i=1 correspond to the progress of the individual processors after t
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parallel steps. The EW/KPZ-type relaxation at a coarse-grained level originates

from the “microscopic” (node-to-node) synchronizational rules. In the absence of

the random links with purely short-range connections, the corresponding steady-

state landscape is rough [73] (de-synchronized state), i.e., it is dominated by large-

amplitude long-wavelength fluctuations. The extreme values of the local fluctuations

emerge through these long-wavelength modes and, in one dimension, the extreme

and average fluctuations follow the same power-law divergence with the system size

[79, 110, 124, 125, 129]

〈∆max〉 ∼ w ∼ Nα , (4.13)

where α is the roughness exponent [73] [Fig. 4.1(a)].
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Figure 4.1: (a) Scaling behavior of the average (w) and the extreme
(above the mean ∆max, below the mean 〈τ̄ − τmin〉, maximum
spread 〈τmax − τmin〉) fluctuations in the virtual time horizon
for the conservative PDES scheme in the steady state. The
processors are connected in a ring-like fashion. Note the log-
log scales. The dashed line represents the theoretical power
law with the roughness exponent α=1/2. (b) The same quan-
tities as in (a), but the processors are connected by a small-
world topology and the additional synchronization through
the random link is performed with probability p=0.10 at ev-
ery parallel step (log-normal scales). The solid straight line
indicates the weak logarithmic increase of the extreme fluc-
tuations with the system size.

The extreme-value limit theorems sketched in the previous section are valid

only for independent (or short-range correlated) random variables. Since the heights

are strongly correlated in the 1D BCS scheme, the known extreme-value limit theo-
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rems cannot be used. A recent work on this issue sheds some light on the distribution

of the extreme heights in the 1D BCS [124, 125]. Equation (4.13) suggests that the

normalized probability density function of the maximum relative height ∆max has a

Figure 4.2: The scaled distributions of maximum relative height of the
1D BCS for different system-sizes. The dashed line is the
Airy distribution function [124]. The inset is the log-normal
version of the same data to show the agreement with the
theoretical curve in the tail .

universal scaling form, P (∆max, N)∼N−αf(∆max/N
α). For the 1D EW/KPZ with

periodic boundary conditions (α=1/2), by using path integral techniques [124] f(x)

was found to be the so-called Airy distribution function. Our simulation results

show that the appropriately scaled maximum relative height distributions are in

agreement with the theoretical distribution from [124] [Fig. 4.2].

4.3 Extreme Fluctuations in Small-World-Connected Net-

work

The important feature of the EW model on SW networks is the develop-

ment of an effective nonzero mass γ(p), corresponding to an actual or pseudo gap

in a field theory sense [27, 30, 130], generated by the quenched-random structure

[27]. In turn, both the average correlation length ξ ≃ [γ(p)]−1/2 and the width
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w ≃ (1/
√

2)[γ(p)]−1/4 approach a finite value (synchronized state) and become self-

averaging in the N→∞ limit [99]. Thus, the average correlation length becomes

finite for an arbitrarily small but nonzero strength of the random links (one such

link per site). This is the fundamental effect of extending the original dynamics to a

SW network: it decouples the fluctuations of the originally correlated system. Then,

the extreme-value limit theorems can be applied using the number of independent

blocks N/ξ in the system [122, 128]. Further, if the tail of the noise distribution

decays in an exponential-like fashion, the individual relative height distribution will

also do so 3, and depends on the combination ∆i/w, where ∆i = τi−τ̄ is the relative

height measured from the mean at site i. Considering, e.g., the fluctuations above

the mean for the individual sites, we will then have P>(∆i) ≃ exp[−c(∆i/w)δ],

where P>(∆i) denotes the “disorder-averaged” (averaged over network realizations)

single-site relative height distribution, which becomes independent of the site i for

SW networks. From the above it follows that the cumulative distribution for the

extreme-height fluctuations relative to the mean ∆max=τmax−τ̄ , if scaled appropri-

ately, will be given by Eq. (4.3) [or alternatively by Eq. (4.5)] in the asymptotic

large-N limit (such that N/ξ≫1). Further, from Eq. (4.4), the average maximum

relative height will scale as

〈∆max〉 ≃ w

[

ln(N/ξ)

c

]1/δ

≃ w

c1/δ
[ln(N)]1/δ , (4.14)

where we kept only the leading order term in N . Note, that both w and ξ approach

their finite asymptotic N -independent values for SW-coupled systems. Also, the

same logarithmic scaling with N holds for the largest relative deviations below the

mean 〈τ̄−τmin〉 and for the maximum spread 〈τmax−τmin〉. This weak logarithmic

divergence, which one can regard as marginal, ensures synchronization for practi-

cal purposes in SW coupled multi-component systems with local relaxation in an

environment with exponential-like noise.

To study the extreme fluctuations of the SW-synchronized virtual time hori-

3The exponent δ for the tail of the local relative height distribution may differ from that of the
noise as a result of the collective (possibly non-linear) dynamics, but the exponential-like feature
does not change.
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zon, we “simulated the simulations”, i.e., the evolution of the local simulated times

based on the above exact algorithmic rules [103]. By constructing histograms for ∆i,

we observed that the tail of the disorder-averaged individual relative-height distribu-

tion decays exponentially (δ=1) [Fig. 4.3]. Then, we constructed histograms for the
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Figure 4.3: Disorder-averaged probability densities for the local height
fluctuations for the SW-synchronized (p=0.10) landscape for
three system sizes indicated in the figure. Note the log-
normal scales. The solid straight line indicates the expo-
nential tail.

extreme-height fluctuations Fig. 4.4(a). The scaled histograms, together with the

similarly scaled FTG density Eq. (4.6), are shown in Fig. 4.4(b). We also observed

that the distribution of the extreme values becomes self-averaging, i.e., independent

of the network realization. Figure 4.1(b) shows that for sufficiently large N (such

that w essentially becomes system-size independent) the average (or typical) size of

the extreme-height fluctuations diverge logarithmically, according to Eq. (4.14) with

δ=1. We also found that the largest relative deviations below the mean 〈τ̄−τmin〉,
and the maximum spread 〈τmax−τmin〉 follow the same scaling with the system size

N [Fig. 4.1(b)]. Note, that for our specific system (PDES time horizon), the “micro-

scopic” dynamics is inherently nonlinear, but the effects of the nonlinearities only

give rise to a renormalized mass γ(p) (leaving γ(p)>0 for all p>0) [8]. Thus, the

dynamics is effectively governed by relaxation in a small world, yielding a finite
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Figure 4.4: (a) Disorder-averaged probability distributions for the ex-
treme height fluctuations for the SW-synchronized conserva-
tive PDES time horizons with p=0.10 for three system sizes
indicated in the figure. Note the log-normal scales. (b) The
same as (a), but the probability densities are scaled to zero
mean and unit variance. The solid curve corresponds to the
similarly scaled FTG density Eq. (4.6) for comparison.

correlation length and, consequently, the slow logarithmic increase of the extreme

fluctuations with the system size [Eq. (4.14)]. Also, for the PDES time horizon, the

local height distribution is asymmetric with respect to the mean, but the average

size of the height fluctuations is, of course, finite for both above and below the

mean. This specific characteristic simply yields different prefactors for the extreme

fluctuations [Eq. (4.14)] above and below the mean, leaving the logarithmic scaling

with N unchanged.

4.4 Synchronization in the Presence of Power-Law Noise

Employing SW-like synchronization networks to suppress large fluctuations

was successful in the presence exponential-like “noise”. We now investigate the

scenario when the noise distribution exhibits a power-law tail. We consider the syn-

chronization problem from parallel discrete-event simulations for power-law tailed

asynchrony. The condition for updating the local “height” variables in the synchro-

nization landscape (corresponding to the local virtual times) is unchanged, i.e., a

node is only allowed to increment its local simulated time τi if it is a local min-

imum in the virtual neighborhood (possibly including the random neighbor with

probability p). The increment, however, is now drawn from a power-law probability
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density p(η) ∼ 1/ηγ+1. Since the above local update rule is, essentially, relaxation

on the network, this model also serves as a prototypical model for relaxation on

SW networks in an environment with power-law noise. The above synchronization

rules can be applied to simulating systems with non-Poisson asynchrony, relevant

to various transport and transmission phenomena in natural and artificial systems

[131, 132, 133]. For example, in Internet or WWW traffic, in part, as a result of uni-

versal power-law tail file-size distributions [134, 135], service times exhibit similarly

tailed distributions in the corresponding queuing networks [136, 137, 138]. In turn,

when simulating these systems, the corresponding PDES should use power-law tail

distributed local simulated time increments.

For a purely one-dimensional connection topology (in the absence of the ran-

dom links) we observed kinetic roughening. Since the time to reach the steady, the

relaxation time in the steady state, and the surface width all diverge with the num-

ber of nodes, it is difficult to measure the roughness exponent accurately. It is well

documented [74], however, that KPZ-like growth in the presence of power-law noise

leads to anomalous roughening (yielding a roughness exponent greater than 1/2 in

1D).

Figure 4.5: Snapshot for the SW-synchronized (p=0.10) landscape in a
power-law noise environment (γ=3) for N=104 nodes.

Here we show and discuss results for the power-law noise generated growth on

SW networks. We have chosen two values of γ governing the tail of the probability
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height fluctuations for three system sizes indicated in the
figure. Note the log-normal scales. The inset shows the same
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density for the noise: γ=3 and γ=5. For both of these cases the noise have a finite

mean and variance. One can expect a power-law tail (at least for above the mean) for

the probability density of the individual local height fluctuations p(∆i) ∼ 1/∆µ+1
i ,

once the noise is “filtered through” the collective dynamics. In Fig. 4.5 we show a

snapshot for the resulting synchronization landscape, indicating the presence of some

rare but very large fluctuations above the mean. Since the local update rules lead

to nonlinear (KPZ-like) effective interactions, we could not predict the exponent

of the local height distribution. Instead, we constructed histograms representing

p(∆i). For the above two values of the noise exponent, γ=3 and γ=5, we observed

power-law tail exponents for p(∆i) ∼ 1/∆µ+1
i as well, but with exponents clearly

differing from that of the noise, µ≈2 and µ≈4, respectively. Figure 4.6 shows p(∆i)

for the former. The figure indicates that for large ∆i a power-law tail develops, while

fluctuations below the mean exhibit an exponential-like tail. This asymmetry is due

to the asymmetry in the microscopic update rules: local minima were incremented

by power-law distributed random amount, hence anomalously large deviations above

the mean can emerge.

Then we analyzed the scaling behavior of the average and the extreme height
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fluctuations in the associated synchronization landscape. In the limit of large N , w

becomes system-size independent, while the extreme-height fluctuations above the

mean diverge in a power-law fashion according to Eq. (4.10) [Fig. 4.7]. Fitting a

power law for N≥103 yields 〈∆max〉 ∼ N0.47 and 〈∆max〉 ∼ N0.25 for the two cases

analyzed in Fig. 4.7, for γ=3 and γ=5, respectively. In order to understand the
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Figure 4.7: Steady-state scaling behavior of the average (w) and the ex-
treme (∆max) fluctuations in the synchronization landscape
for power-law noise with exponent γ=3 (filled symbols) and
γ=5 (open symbols) using SW links with p=0.10. The straight
solid-line segments are the best-fit power laws (〈∆max〉 ∼ N1/µ

with 1/µ=0.47 and 1/µ = 0.25, respectively) for the extreme
fluctuations for system sizes N ≥ 103, according to Eq. (4.10).

underlying reason for this divergence, we analyzed the histograms constructed for

the probability density of the extreme height fluctuations p(∆max) [Fig. 4.8]. The

shapes of these histograms suggest that the limit distribution is of Fréchet type. We

constructed the histograms for the scaled variable y = ∆max/〈∆max〉. Then using

µ = 1/0.47 = 2.1 and µ = 1/0.25 = 4 as implied by the scaling behavior of 〈∆max〉
[Eq. (4.10)], we plotted the similarly scaled Fréchet density Eq. (4.11) [Fig. 4.8(b)].

These results indicate that the effect of the random links in SW networks is again

to decouple the local field variables, an in turn, the statistics of the extremes are

governed by the Fréchet distribution. Consequently, the average size of the extremes
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diverges in a power-law fashion 〈∆max〉 ∼ N1/µ. This power-law divergence is not

the result of a divergent length scale emerging from the cooperative effects of the

interacting nodes. On the contrary, the local field variables become effectively in-

dependent using SW synchronization. The tail behavior for them (power-law with

a possibly different exponent), however, is inherited from the noise. Hence, the

statistics of the extremes will be of the Fréchet type, yielding a power-law increase

of the average size of the largest fluctuations above the mean.

Figure 4.8: (a) Disorder-averaged probability distributions for the ex-
treme height fluctuations for the SW-synchronized (p=0.10)
landscape in a power-law noise environment for γ=3 (filled
symbols) and γ=5 (open symbols) for three system sizes indi-
cated in the figure. Note the log-log scales. (b) Scaled form
of probability densities in Fig. 4.8. The solid curves corre-
spond to the similarly scaled Fréchet density Eq. (4.11) for
comparison.

The above picture is reasonably consistent in that the exponents for the tail

behavior (∼1/∆µ+1
i ) for both the probability density of the local heights p(∆i) and

the extremes p(∆max) were within about 6%. Further, the average size of the ex-

tremes increases as N1/µ, in accordance with the underlying Fréchet distribution.

It is interesting to note that for µ≈2, formally, p(∆i) does not have a finite

variance (associated with the width w =
√

〈(τi − τ̄ )2〉 =
√

〈(∆i)2〉). Indeed, in

the simulations we observed large fluctuations in w and error bars of the order of

the width itself. The “theoretical” divergence for µ=2 is, of course, limited by the

logarithm of a large but finite cutoff in the simulations. This anomalous (formally

divergent) width is not related to a system-size dependent widening of the individual
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distributions controlled by a divergent correlation length. Rather, the individual

distributions develop a heavy-tailed shape independent of the system size.

Examining the largest fluctuations below the mean reveals that they increase

only logarithmically with the system size. This is simply the result of the exponential

or similar tail of the individual local height fluctuations below the mean [Fig. 4.5],

where the governing limit distribution is of the Gumbel type (Sec. 4.1.1).

The above results show, that SW synchronization can be efficient to control the

average size of the fluctuations, but the largest fluctuations still diverge in a power-

law fashion with the number of nodes. While the SW-network effectively decouples

the fluctuations in the synchronization landscape, it cannot suppress power-law tails

already present in local noise distribution. In fact, the inherited power-law tails for

the local height fluctuations are even “heavier” than that of the corresponding noise,

µ≈2 for γ=3 and µ≈4 for γ=5.



CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

We studied synchronization phenomena in networks in general, and consid-

ered the scalability problem of the basic conservative synchronization schemes to

test our results. Based on a mapping [39] between the evolution of the virtual

time horizon for the basic conservative PDES scheme [55, 56] and kinetically grown

non-equilibrium surfaces [73], we constructed a coarse-grained description for the

scalability and performance of such large-scale parallel simulation schemes. These

schemes can be applied to large spatially extended systems with short-range inter-

actions and asynchronous dynamics. The one-site-per PE basic PDES was shown

to exhibit KPZ-like kinetic roughening. This scheme is scalable in that the average

progress rate of the PEs approaches a non-zero value. The spread of the virtual

time horizon, however, diverges as the square root of the number of PEs, leading to

“de-synchronization” and difficulties in data management.

In this work we considered the simplest (and in some regards, the worst case)

scenario, where each nodes carries one site of the underlying physical system, hence

synchronization with nearest neighbor PEs is required at every step. In actual

parallel implementations the efficiency can be greatly increased by hosting many

sites by each PE [47, 50, 51]. That way, communication between PEs is only required

when local variables are to be updated on the boundary region of the sites hosted

by the PEs (within the finite range of the interactions). While the above procedure

clearly increases the utilization and reduces the actual communication overhead,

it gives rise to an even faster growing early time regime in the simulated time

horizon [139]. Since the PEs rarely need to synchronize, up to some crossover

time, the evolution of the time horizon is governed by random deposition [73], a

faster roughening growth, before eventually crossing over to the KPZ growth and a

subsequent saturation.

Our goal here was to achieve synchronization without any global intervention.

62
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We constructed a specific version of the SW network, where each PE was connected

to exactly one other randomly chosen PE. The extra synchronizational steps through

the random links are merely used to control the width. The virtual time horizon for

the SW-synchronized PDES scheme becomes “macroscopically” smooth and essen-

tially exhibits mean-field like characteristics. The random links, on top of a regular

lattice, generate an effective “mass” for the propagator of the virtual time horizon,

corresponding to a nonzero correlation length. The width becomes finite, for an ar-

bitrary small rate of synchronization through the random links, while the utilization

remains nonzero, yielding a fully scalable PDES scheme. The former statement is

only marginally weakened by observing that the extreme fluctuations in the time

horizon can exhibit logarithmically large values as a function of the total number

of PEs. The above predictions of the coarse-grained PDES model were confirmed

by actually “simulating the simulations”. The generalization when random links

are added to a higher-dimensional underlying regular lattice is clear: since the syn-

chronization landscape of the 1D SW network is already macroscopically smooth,

in higher dimensions it will be even more so [27] (i.e., the critical dimension of the

underlying regular substrate is less than one).

We also studied the scalability properties for a causally constrained PDES

scheme hosted by a network of computers where the network is scale-free following

a “preferential attachment” construction [5, 102]. Here the PEs have to satisfy the

general criterion that their simulated time should be smaller than that of all of their

links’ simulated times in order to advance their local time. Despite some nodes

in the network having abnormally large connectivity (as a result of the scale-free

nature of the degree distribution), we found that the computational phase of the

algorithm is only marginally non-scalable. The utilization exhibited slow logarith-

mic decay as a function of the number of PEs. At the same time, the width of the

time horizon diverged logarithmically slowly, rendering the measurement phase of

the simulations marginally non-scalable as well. The implication of this finding is

that the internet, which is already exploited for distributed computing for mostly

“embarrassingly parallel” problems through existing GRID-based schemes [17, 16],

may have the potential to accommodate efficient complex system simulations (such
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as asynchronous PDES) where the nodes frequently have to synchronize with each

other. An intriguing question to pursue is how the logarithmic divergence of the

surface fluctuations observed here can be related to the collective behavior (in par-

ticular, the finite-size effects of the magnetic susceptibility) of Ising ferromagnets on

scale-free networks [140, 141, 142, 143] with the same degree distribution.

We also considered the extreme-height fluctuations in this prototypical model

with local relaxation, unbounded local variables, and in the presence of exponen-

tial or power-law tailed noise. We showed that when the interaction topology is

extended to include random links in a SW fashion, the local height variables be-

come effectively independent and the statistics of the extremes is governed by the

FTG or the Fréchet distribution, respectively. For both types of noise, the average

width of the synchronization landscape becomes independent of the system size.

The extreme fluctuations increase only logarithmically with the number of nodes

for exponential-like noise and in a power-law fashion for the power-law noise. These

findings directly addresses synchronizability in generic SW-coupled systems where

relaxation through the links is the relevant node-to-node process and effectively

governs the dynamics. We illustrated our results on an actual synchronizational

problem in the context of scalable parallel simulations.

Our findings are also closely related to critical phenomena and collective phe-

nomena on networks [2, 3, 36, 144]. In particular, in recent years, a number of

prototypical models have been investigated on SW networks [19, 21, 22, 23, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 38, 105, 145, 146, 147, 148, 149, 150, 151]. Of these,

the ones most closely related to our work are the XY model [25], the EW model

[27, 28, 29], and diffusion [27, 28, 29, 30, 31, 32, 33, 34] on SW networks. The find-

ings suggest that systems without inherent frustration exhibit (strict or anomalous)

[27, 28, 29, 34, 151] mean-field-like behavior when the original short-range interac-

tion topology is modified to a SW network. In essence, the SW couplings, although

sparse, induce an effective relaxation to the mean of the respective local field vari-

ables, and in turn, the system exhibits a mean-field-like behavior [151]. This effect

is qualitatively similar to those observed in models with “annealed” long-range ran-

dom couplings [32, 152, 153], but on (quenched) SW networks, the scaling properties
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can differ from those with annealed interactions [27, 28, 29, 34, 151].

5.2 Future Work

In many real networks the cost of the random and arbitrarily long-range links

could be unaffordable. Recent works show that in cortical [154] and on-chip logic

networks [155] power-law-suppressed link-length distributions are observed because

these are spatially embedded networks with wiring-costs [156]. To study these net-

works one can consider a special model of SW network with distance-dependent

power-law probability distribution of long-range links, where the probability of two

nodes being connected is r−α, with a varying exponent α and the distance r between

the nodes [28, 29]. By varying the exponent α, one can control the distribution of the

random links. Changing α changes the topology of the network from the “plain” SW

in which there is no wiring cost as we discussed in Chapter 3 (α=0), to a short-range

network in which only nearest neighbor links are present (α=∞).

The synchronization problem described in the previous chapters can also be

studied on this network. The roughness of the time-surface as a function of the

exponent α can give valuable information about the conditions on the scalability of

the PDES. One can follow the same way of constructing the network; one random

link per PE (chosen with distance-dependent probability) in addition to the nearest

neighbors. The width of the linear EW model obtained through adjacency matrix

diagonalization exhibits a smooth transition from system-size independent width

(plain SW) to the KPZ width dependence (〈w2〉∼N) [Fig. 5.1(a)]. Simulating the

“microscopic” dynamics in the actual PDES (incrementing the “local” minima)

can give rise to nonlinear effects, typical for the KPZ surface, as can be seen in

Fig. 5.1(b). We see the transition from plain SW to KPZ again but through critical

instability. By analyzing the Fig. 5.1(b) we can argue that for some critical range of

α, the scalability of the PDES is worse than the BCS scheme (short-range network).

Another surface growth model, single-step model (KPZ class), has also the same

effect suggesting that as long as there is nonlinearity in the growth, the similar

peaks in the width will be seen.

Another possible future work might be to study the scale-free Barabási-Albert
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Figure 5.1: (a) Width as a function of α for the EW model on a 1/rα SW
network. (b) Width as a function of α for the conservative
synchronization dynamics on a 1/rα SW network.

network further. In the preferential attachment process to construct the BA network

at each time step we added only one node to the network (m=1). This led to

logarithmic (marginal) scalability of the PDES scheme. It might help to increase

m in suppressing the virtual time fluctuations and thus making the PDES scheme

fully scalable in this network as well.
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Jensen, S. Lise, J.M. López, M. Nicodemi, J.-F. Pinton, and M. Sellitto,
“Reply to ‘comment on ‘universal fluctuations in correlated systems’ ’ ”,
Phys. Rev. Lett. 89, 208902 [1 page] (2002). [cond-mat/0209416]

[114] S.T. Bramwell, J.-Y. Fortin, P.C.W. Holdsworth, S. Peysson, J.-F. Pinton,
B. Portelli, and M. Sellitto, “Magnetic fluctuations in the classical XY model:
The origin of an exponential tail in complex systems”, Phys. Rev. E 63,
041106 [22 pages] (2001). [cond-mat/0008093]

[115] V. Aji and N. Goldenfeld, “Fluctuations in finite critical and turbulent
systems”, Phys. Rev. Lett. 86, pp. 1007–1010 (2001). [cond-mat/0008243]

[116] T. Antal, M. Droz, G. Györgyi, and Z. Rácz, “1/f Noise and extreme-value
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l´Université Paris XI Orsay (2000)
http://axtnt3.phys.uniroma1.it/~andreab/these.html

[129] G. Korniss, M.A. Novotny, P.A. Rikvold, H. Guclu, and Z. Toroczkai,
“Going through rough times: From non-equilibrium surface growth to
algorithmic scalability”, Materials Research Society Symposium Proceedings
Series 700, pp. 297–308, Fall Meeting, Boston, (2001). [cond-mat/0112103]

[130] B. Kozma and G. Korniss, “Stochastic growth in a small world”, in
Computer Simulation Studies in Condensed Matter Physics XVI, edited by
D.P. Landau, S.P. Lewis, and H.-B. Schüttler, Springer Proceedings in
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APPENDIX A

Steady-State Structure Factor in Linear Growth Models

The time evolution of linearly interacting local field variables on a network can be

written in the form of a Langevin equation as

∂tτi(t) = −
∑

j

Γijτj(t) + ηi(t) , (A.1)

where Γij is the coupling matrix containing the topology of the network, and ηi(t)

is the noise delta-correlated in space/time with zero average as expressed in the

following equations

〈ηi(t)〉 = 0 (A.2)

and

〈ηi(t)ηj(t
′)〉 = 2Dδi,jδ(t − t′) . (A.3)

For the nearest-neighbor network Γij is the discrete Laplacian

Γij = Γ0
ij = 2δi,j − δi−1,j − δi+1,j . (A.4)

For the maximal-distance network

Γij = Γ0
ij + γ(δi,j − δi−N/2,j) . (A.5)

For the fully-connected network

Γij = Γ0
ij + γ(δi,j −

1

N
) . (A.6)

We consider cases where Γij is translationally invariant, i.e., it does not depend

on i and j explicitly but depends only on the distance l=i − j between them,

Γij = Γ(i − j) = Γ(l) . (A.7)
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The structure factor [as defined through Eq. (2.9)] contains all the physics we

need to describe the evolution of the network. One needs the Fourier transforms of

the local field variables defined as

τ̃k(t) =
N

∑

j=1

e−ikj[τj(t) − τ̄ (t)] . (A.8)

Taking the Fourier transformation of Eq. (A.1) one finds

∂tτ̃k(t) = −Γ̃(k)τ̃k(t) + η̃k(t) , (A.9)

where Γ̃(k) and η̃k(t) are the Fourier transforms of Γ(l) and ηi(t), respectively. The

wave number k goes from 1 to N−1 since we exclude the zero-mode contribution,

τ̃0(t)≡0 for all t. We can see that the evolution decouples for different k values in

Fourier space. The second moment of the Fourier transform of the noise is

〈ηk(t)ηk′(t′)〉 = 2DNδk+k′,0δ(t − t′) . (A.10)

Integrating Eq. (A.9) we obtain

τ̃k(t) = e−Γ̃(k)t
∫ t

0
dt′eΓ̃(k)t′ η̃k(t

′) . (A.11)

By using Eq. (A.11) one can write the equal-time correlations for the local

field variables as

〈τ̃k(t)τ̃k′(t)〉 = e−[Γ̃(k)+Γ̃(k′)]t
∫

dt′
∫

dt′′eΓ̃(k)t′+Γ̃(k′)t′′〈η̃k(t
′)η̃k′(t′′)〉 . (A.12)

By substituting the second moment of the Fourier transform of the noise [Eq. (A.10)]

into Eq. (A.12), and by using the basic property of the delta function δ(t′ − t′′) in

the integral, one obtains

〈τ̃k(t)τ̃k′(t)〉 = 2DNδk+k′,0e
−[Γ̃(k)+Γ̃(k′)]t

∫ t

0
dt′e[Γ̃(k)+Γ̃(k′)]t′ . (A.13)
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The integral in the equation above can be evaluated easily and one obtains

〈τ̃k(t)τ̃k′(t)〉 = 2DNδk+k′,0e
−[Γ̃(k)+Γ̃(k′)]te

[Γ̃(k)+Γ̃(k′)]t − 1

Γ̃(k) + Γ̃(k′)
. (A.14)

After rearranging the terms and rewriting the delta function as δk+k′,0=δk′,−k, one

obtains

〈τ̃k(t)τ̃k′(t)〉 =
2DNδk′,−k

Γ̃(k) + Γ̃(−k)
{1 − e−[Γ̃(k)+Γ̃(−k)]t} . (A.15)

From the present form of Eq. (A.15) and by using Eq. (2.9) one can deduce the

general time-dependent structure factor as

S(k, t) =
2D

Γ̃(k) + Γ̃(−k)
{1 − e−[Γ̃(k)+Γ̃(−k)]t} . (A.16)

In the steady-state (t→∞) the structure factor becomes

S(k) = lim
t→∞

S(k, t) =
2D

Γ̃(k) + Γ̃(−k)
. (A.17)

The steady-state structure factor can be calculated easily once the Fourier

transform of the coupling function Γ̃(k) is known. Now we calculate the structure

factors for a few simple interaction topologies.

A.1 Nearest-neighbor network

The coupling matrix Γij for the nearest-neighbor network is a Laplacian,

Γij = Γ0
ij = 2δi,j − δi−1,j − δi+1,j , (A.18)

and one can rewrite the equation above by using the distance-dependent coupling

function

Γ0(l) = 2δl,0 − δl,1 − δl,−1 , (A.19)

then the Fourier transform of Γ0(l) becomes

Γ̃0(k) = (2 − eik − e−ik) = 2[1 − cos(k)] . (A.20)
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So the structure factor is, as in Eq. (2.10),

S(k) =
D

2[1 − cos(k)]
. (A.21)

A.2 Maximal-distance network

Starting with the coupling matrix for the maximal-distance network, one ob-

tains the distance-dependent coupling function as

Γ(l) = Γ0(l) + γ(δl,0 − δl, N
2
) . (A.22)

Then the Fourier transform Γ̃(k) becomes,

Γ̃(k) = Γ̃0(k) + γ(1 − e
ikN
2 ) = 2[1 − cos(k)] + γ(1 − e

ikN
2 ). . (A.23)

By using Eq. (A.17) we obtain

S(k) =
D

2[1 − cos(k)] + γ[1 − cos(kN
2

)]
. (A.24)

A.3 Fully-connected network

In this network, as we mentioned in Chapter 3, each node is connected to all

other nodes with strength γ/N and the coupling function is

Γ(l) = Γ0(l) + γ(δl,0 −
1

N
) . (A.25)

Its Fourier transform becomes

Γ̃(k) = Γ̃0(k) + γ = 2[1 − cos(k)] + γ . (A.26)

Thus one can obtain the structure factor as

S(k) =
D

2[1 − cos(k)] + γ
. (A.27)


